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ABSTRACT 

 

Stochastic subspace identification methods are an efficient tool for system identification of mechanical systems 

in Operational Modal Analysis, where modal parameters (natural frequencies, damping ratios, mode shapes) 

are estimated from measured ambient vibration data of a structure. System identification is usually done for 

many successive model orders, as the true system order is unknown.  Then, identification results at different 

model orders are compared to distinguish true structural modes from spurious modes in so-called stabilization 

diagrams. These diagrams are a popular GUI-assisted way to select the identified system model, as the true 

structural modes tend to be stable for successive model orders, fulfilling certain stabilization criteria that are 

evaluated in an automated procedure. In Operational Modal Analysis of large structures the number modes of 

interest as well as the number of used sensors can be very large, thus leading to high model orders that have to 

be considered for system identification. This also means a big computational burden. Recently, an efficient ap-

proach to estimate system matrices at multiple model orders in Stochastic Subspace Identification was pro-

posed. In this paper it is shown how this new “Fast SSI” improves the computation of the stabilization diagrams, 

leading to much faster system identification results for large systems. The Fast SSI is applied to the system 

identification of some relevant large scale industrial examples. 

 

 

1 Introduction 

 

Subspace-based system identification methods have been proven efficient for the identification of linear time-

invariant systems (LTI), fitting a linear model to input/output or output-only measurements taken from a system. 

An overview of subspace methods can be found in [1], [2], [3], [4]. During the last decade, subspace methods 

found a special interest in mechanical, civil and aeronautical engineering for the identification of modal parame-

ters (natural frequencies, damping ratios, mode shapes) of vibrating structures, as they are computationally effi-

cient methods and can deal with realistic excitation assumptions.  

In an Operational Modal Analysis (OMA) context, the number of sensors can be large (up to hundreds or thou-

sands in the future), as well as the number of modes to be identified. In order to retrieve the desired large number 

of modes, an even larger model order must be assumed while performing identification. This over-specification of 

the model order and effects due to measurements under operational conditions, such as finite number of data 

samples, measurement noises, non-stationary excitations or nonlinear structure, cause a number of spurious 

modes to appear in the identified models. Based on the observation that physical modes remain quite constant 

when estimated at different over-specified model orders, while spurious modes vary, they can be distinguished 



using the well-known stabilization diagrams [3]. There, the physical modes are selected from system identification 

results at multiple model orders in a GUI-assisted way. As system identification is done at an over-specified mod-

el order and repeated while truncating at multiple model orders, the computational burden for this procedure is 

significant especially for large model orders. 

Recently, the authors proposed a fast computation scheme for Stochastic Subspace Identification at multiple 

model orders in [5], [6]. With these “Fast SSI” algorithms, stabilization diagrams can be computed very fast – es-

pecially for structures equipped with many sensors and at high model orders. In this paper, their efficiency is 

demonstrated on several large scale structures. 

 

 

2 Stochastic Subspace Identification (SSI) 

 

Stochastic Subspace Identification methods are the state of the art methods for modal parameter estimation. 

They provide unbiased and consistent estimates, even under non-stationary excitation [1], [4]. In this section, an 

overview of the identification algorithm is given.  

 

2.1 Models and Parameters 

 

The behavior of a mechanical system is assumed to be described by a stationary linear  

dynamical system 

( ) ( ) ( ) ( ), ( ) ( )MZ t CZ t KZ t v t Y t LZ t+ + = =ɺɺ , (1) 

where t denotes continuous time, M, C and K are the mass, damping and stiffness matrices, high-dimensional 

vector Z collects the displacements of the degrees of freedom of the structure, the non-measured external force v 

modeled as non-stationary Gaussian white noise, the measurements are collected in the vector Y and matrix L 

indicates the sensor locations. Let m be the number of degrees of freedom of system (1), such that M, C and K 

are of dimension m x m, and let r be the number of sensors, such that Y is of dimension r. 

The eigenstructure of (1) with the modes µ and mode shapes ϕµ is a solution of 

2 2
det( ) 0, ( ) 0,M C K M C K Lµ µ µµ µ µ µ φ ϕ φ+ + = + + = = . (2) 

Sampling model (1) at some rate 1/τ yields a discrete model in state-space form 

1 1,k k k k kX FX V Y HX+ += + = , (3) 

where the state transition matrix F is of dimension n x n with the model order n = 2m, and the observation matrix H 

is of dimension r x n. The eigenstructure of system (3) is given by 

det( ) 0, ( ) 0,F I F I Hλ λ λλ λ φ ϕ φ− = − = = . (4) 

Then, the eigenstructure of the continuous system (1) is related to the eigenstructure of the discrete system (3) by 

e ,
τµ

µ λλ ϕ ϕ= = . (5) 

The collection of modes and mode shapes (λ,ϕλ) is a canonical parameterization of system (3). From the eigenva-

lues λ, the natural frequencies f and damping ratios d of the system are directly recovered from f = a / (2πτ) and 

d = 100|b|/(a
2
 + b

2
)
1/2, where a = |arctan Re(λ)/Im(λ)| and b = ln |λ|. 

 

2.2 Data-driven SSI 

 

To obtain the eigenstructure of system (3) from measurements (Yk)k=1,…,N+p+q, the stochastic subspace identifica-

tion algorithm is used. In the first step, the so-called subspace matrix H is built according to a selected subspace 



algorithm. In the following, the data-driven SSI using the UPC algorithm [2], [3] is described, but also any other 

SSI algorithm can be used. 

In the first step, the parameters p and q are chosen and the block data Hankel matrices  
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are filled, where in matrix Yk
(ref)

 a possible subset of the output sensors can be used, the so-called reference sen-

sors or projection channels for a more economic identification procedure [3]. Let r0 be the dimension of Yk
(ref). The 

parameters p and q in (6) are chosen, such that min(pr, qr0) ≥ n.  

Theoretically, the projection H = Y
+
 Y

–T
 (Y

–
 Y

–T
)

–1
 Y

– is computed, but in practice only the left matrices of a SVD 

of H are needed, which can also be obtained from the thin LQ decomposition 
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Then, H is defined as H = R21. 

The matrix H possesses the factorization property H = O X into observability matrix O and some other matrix 

X, where O is obtained from H by a singular value decomposition (SVD) and truncation at the desired model or-

der n 
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Note that ∆1 contains n singular values and U1 contains n columns. From the observability matrix O the matrices H 

in the first block row and F from a least squares solution of 

F =O O   with  
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are obtained. The eigenstructure (λ,φλ) of the system (3) is then obtained from (4). 

 

 

3 Fast Multi-Order Subspace Identification 

 

3.1 Multi-Order System Identification 

 

In order to compute the modal parameters at multiple system orders for a stabilization diagram, system identifica-

tion needs to be done at different successive model orders n = nj, j = 1, …,t, with  

1 2 01 ... min( , )tn n n pr qr≤ < < < ≤   (10) 



where t is the number of models to be estimated. The choice of the model orders nj, j = 1, …,t, is up to the user 

and also depends on the problem. For example, nj =  j + c or nj = 2j + c with some constant c can be chosen. As 

the eigenvalues of the state transition matrix are pairwise complex conjugate, the latter choice can be made in the 

sense that two model orders are needed to recover one new mode.  

To indicate the model order nj for the respective matrices in the identification procedure, the subscript j is used. 

Thus, at each model order nj the matrices Fj and Hj are identified from the observability matrix Oj. Note that the 

latter consists of the first nj columns of Ot due to (8).  

 

3.2 Solution of the Least-Squares Problem for the State Transition Matrix F 

 

The observation matrix Hj is easily obtained from the first block row (containing r rows) of the observability ma-

trix Oj at each model order. Obtaining Fj is more complicated, as the least squares problem (8) needs to be solved 

each time, which writes at model order nj 

j j j
F =O O . (11) 

The standard solution of this equation is obtained by using the pseudoinverse  

( )j j j
F

+
= O O , (12) 

where 
+
 denotes the Moore-Penrose pseudoinverse. A more efficient and also numerically stable way to solve 

it [7], uses the thin QR decomposition 

j j jQ R=O . (13) 

With  

T
j j jS Q= O  (14) 

the solution of the least squares problem is 

1
j j jF R S−= . (15) 

Note that Rj is upper triangular and both Rj and Sj are of size nj x nj. 

For the identification procedure, the observability matrix Ot is first obtained at the maximal desired model order 

nt. Then, the steps (13) – (15) (or the step (12)) need to be repeated at the different model orders nj, j = 1,…,t, 

where Oj is obtained from the first nj columns of Ot. 

 

3.3 Fast Multi-Order Computation 

 

Solving the least squares problem for the computation of the state transition matrix at multiple model orders is a 

big computational burden, especially when using a large number of sensors and high model orders. In [5], [6] a 

fast algorithm was proposed, which exploits the structure of the least squares problem at multiple model orders, 

namely that Oj consists of the first nj columns of Ot.  

This algorithm computes the necessary matrices for solving the least squares problem only once at the max-

imal desired model order nt (Equations (13) – (15) with j = t), leading to matrices Rt, St and Ft. Then, instead of 

solving the least squares problems at all the orders n1, n2, …, nt – 1, it was shown that the state transition matrices 

Fj at these lower orders can be computed much more efficiently directly from submatrices of Rt and St. 

 

 

 

 



Theorem 1 ([5], [6]). Let Ot, Qt, Rt and St be given at the maximal desired model order nt with 

t t tQ R=O ,  T
t t t

S Q= O ,  1
t t tF R S−= , (16) 

such that Ft is the least squares solution of 

t t t
F =O O . (17) 

Let j ∈ {1, …, t – 1}, and let Rt and St be partitioned into blocks 
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where Rj
(11) and Sj

(11) are of size nj x nj. Then, the state transition matrix Fj at model order nj, which is the least 

squares solution of 

j j jF =O O , (19) 

satisfies 

( )
1

(11) (11)
j j jF R S

−
= . (20) 

 

Using Theorem 1, steps (13) and (14) for the least squares solution of the state transition matrix Fj are not neces-

sary anymore for j = 1, …, t – 1. Once the matrices Rt and St are obtained, the submatrices Rj = Rj
(11) and Sj = Sj

(11) 

are selected at each model order nj from Rt and St, and the state transition matrix is directly obtained in (15), which 

brings a significant reduction of the computational efforts. From these matrices, the eigenstructure identification is 

done in (3) and (4) in order to fill a stabilization diagram at the multiple model orders for the modal analysis. 

For a more detailed analysis of the described algorithm, as well as for an iterative computation of the system 

matrices, the interested reader may refer to [5], [6]. 

 

 

4 Applications 

 

To demonstrate the efficiency of the new fast Crystal Clear SSI algorithm, some operational data from a ship were 

analyzed, see Figure 1.  

 

  

Figure 1: The ship that was measured during operation in 16 channels. Measurements were made by Professor 

Schlottmann and Dr. Rosenow, Rostock University, Germany. Right picture shows the sensor layout. 

 



 

The measurements consisted of 16 channels with 691200 samples per channel. This data contains over 40 

modes and several harmonics arising from the propellers.  

The objective of the example was to test the speed increase using the new algorithm compared to the conven-

tional one. By using the new algorithm, the estimation of the stabilization diagram for model orders ranging from 1 

to 300 was finished after only 43 seconds, whereas the conventional algorithm needed 52 minutes. This is 

equivalent to a speed increase of 73 times in this particular case. Figure 2 presents the stabilization diagram. 

 

 

 

Figure 2: Stabilization diagram obtained in ARTeMIS Extractor Pro. 

 

5 Conclusions 

 

In this paper, a new algorithm was presented that efficiently computes the system matrices at multiple model or-

ders in Stochastic Subspace Identification. The computational complexity for this part of the computation of the 

stabilization diagram is significantly reduced. Thus, it is a major advancement for subspace-based modal analy-

sis, especially for large structures equipped with many sensors, where high model orders are considered. 
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