
VARIANCE COMPUTATION OF MODAL PARAMETER ES-
TIMATES FROM UPC SUBSPACE IDENTIFICATION
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ABSTRACT
The vibration response of a structure from ambient excitation is measured and used to estimate the
modal parameters in Operational Modal Analysis (OMA). Subspace-based system identification allows
the accurate estimation of the modal parameters (natural frequencies, damping ratios, mode shapes)
from output-only measurements, amongst others with data-driven methods like the Unweighted Principal
Component (UPC) algorithm. Due to unknown excitation, measurement noise and finite measurements,
all modal parameter estimates are inherently afflicted by uncertainty. The information on their uncer-
tainty is most relevant to assess the quality of the modal parameter estimates, or when comparing modal
parameters from different datasets. Previously, a method for variance estimation has been developed for
the covariance-driven subspace identification. In this paper, we present an extension of this method for
the variance computation of modal parameters for the UPC subspace algorithm. Developing the sen-
sitivities of the modal parameters with respect to the output covariances, the uncertainty is propagated
from the measurements to the modal parameters from UPC in a rigorous way. The resulting variance
expressions are easy to evaluate and computationally tractable when using an efficient implementation.
In a second step, the uncertainty information of the stabilization diagram is used to extract appropriately
weighted global mode estimates and their variance. The method is applied to experimental data from the
Z24 Bridge.
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1. INTRODUCTION

The goal of operational modal analysis (OMA) is the identification of modal parameters (frequencies,
damping ratios, mode shapes) from output-only vibration measurements on a structure under unknown
ambient excitation (e.g. wind, traffic). The modal parameters are related to the eigenvalues and observed
eigenvectors of a linear time-invariant system. Many methods for OMA are available in the literature
[1]. Subspace-based linear system identification algorithms are state of the art, fitting a linear model
to output-only measurements taken from a system [2, 3]. In this paper we focus on the data-driven
Unweighted Principal Component (UPC) subspace method. It is based on the orthogonal projection of



data Hankel matrices containing lags of the measurement data. The purpose of this paper is the variance
analysis of modal parameters obtained from this method.

Using noisy measurement data, subspace algorithms provide parameter estimates that are afflicted with
statistical uncertainty due to finite data, unknown inputs and sensor noise properties. In the field of vi-
bration analysis, explicit expressions for their variance estimation have been proposed for some subspace
methods. A successful strategy has been to propagate an estimated covariance on the measurements to
the desired parameters based on a sensitivity analysis. The required sensitivities are derived analytically
through the propagation of a first-order perturbation from the data to the identified parameters. This
approach has the advantage of computational convenience: the sample covariance as the starting point
is directly linked to the measurements and therefore easy to compute, and the sensitivities are computed
using the system identification estimates. In [4], details of this scheme are developed for the covariance
computation for output-only covariance-driven subspace identification.

Besides technical correctness, this approach yields a well-adapted fast and memory efficient implemen-
tation in the covariance-driven output-only case [5]. As a result, the computational cost for the variance
computation of an entire stabilization diagram analysis is reduced significantly. This was mandatory
for realistic applications on large structures like in [6, 7]. Very recently, the generalization of this ap-
proach to a wider class of subspace algorithms in both output-only and input/output frameworks, and for
covariance-driven and data-driven methods, has been presented in [8].

A challenge in the variance estimation for data-driven methods is the nature of the data Hankel matrices
that does not allow an intrinsic covariance formulation as this is the case with covariance-driven subspace
methods. Instead, the variance estimation for data-driven algorithms is carried out by developing an
equivalent formulation in a covariance-driven form, where the sensitivities of the modal parameters with
respect to output covariances are derived, and the uncertainty of the output covariances is propagated to
the modal parameters in a rigorous way.

In a second step, the uncertainty information of the stabilization diagram is used to extract appropriately
weighted global mode estimates and their variance.

2. THE SUBSPACE METHOD

2.1. Mechanical and state space models

The vibration behavior of a linear time-invariant mechanical structure, which is observed at some sensor
positions, can be described by the equations{
Mq̈(t) + Cq̇(t) +Kq(t) = ũ(t)

y(t) = Laq̈(t) + Lv q̇(t) + Ldq(t) + v(t)
(1)

whereM, C and K ∈ Rm×m are mass, stiffness and damping matrices, and m is the number of degrees
of freedom. The vector q(t) ∈ Rm contains the displacements at the degrees of freedom generated by
the unknown inputs ũ(t) ∈ Rm. The vector y(t) ∈ Rr contains the observed outputs, with r being the
number of sensors. The matrices La, Lv and Ld ∈ RNo×m represent how accelerations, velocities and
displacements are obtained from the model degrees of freedom. The vector v(t) ∈ Rr is the sensor noise.
Both ũ(t) and v(t) are assumed to be white noise with finite fourth moments and uncorrelated with the
known inputs.

Sampling Eq. (1) at rate τ yield the discrete-time state space representation{
xk+1 = Axk + wk
yk = Cxk + vk,

(2)



where xk = [q̇(kτ)T q(kτ)T ]T ∈ Rn is the state vector, n = 2m is the model order and

Ac =

[
−M−1C −M−1K
Im 0m,m

]
∈ Rn×n, A = exp(Acτ), (3)

C =
[
Lv − LaM−1C Ld − LaM−1K

]
∈ Rr×n, (4)

are the state transition and output matrices, respectively. The state noise termwk is linked to the unknown
inputs ũ(t), and the output noise term vk has contributions from v(t) and in the case of acceleration
measurements also from ũ(t).

The modal parameters of system (1) are equivalently found in system (2) as follows. Let λi and φi be
eigenvalues and eigenvectors of A, for i = 1, . . . , n. Then the eigenvalues µi of system (1), modal
frequencies fi, damping ratios ξi and mode shapes ϕi are obtained by

µi =
log(λi)

τ
, fi =

|µi|
2π

, ξi =
−Re(µi)

|µi|
, ϕi = Cφi. (5)

2.2. Subspace identification

The UPC subspace algorithm is based on projections of output data Hankel matrices with a “past” and
“future” time horizon. These projections are designed in a way that the column space of the resulting
matrixH is defined by the observability matrix Γp = [CT . . . (CAp−1)T ]T of system (2).

The data Hankel matrix Yi|j is defined for the samples yl ∈ Rr as

Yi|j
def
=

yi yi+1 . . . yi+N−1
...

...
. . .

...
yj yj+1 . . . yj+N−1

 ∈ R(j−i+1)r×N . (6)

Let N + p+ q be the number of available samples for the outputs yk, where q and p are parameters that
define a “past” and “future” time horizon. They are most often equal, and assumed to be large enough
to satisfy the condition min{(p − 1)r, qr} ≥ n. The “past” (−) and “future” (+) data Hankel matrices
containing the outputs are defined as

Y− def
=

1√
N
Y0|q−1, Y+ def

=
1√
N
Yq|q+p−1. (7)

The UPC method is defined by the orthogonal projection

H = Y+/Y− = Y+Y−T
(
Y−Y−T

)†
Y−,

fulfilling the factorization property H = ΓpZ into observability matrix Γp and matrix Z which is a
matrix containing the Kalman filter states. Note that in practice the observability matrix Γp is obtained
through the LQ decomposition[
Y−
Y+

]
=

[
L11 0
L21 L22

] [
Q1

Q2

]
from a singular value decomposition (SVD) of L21, since it holdsH = L21Q1 where Q1 is an orthonor-
mal matrix.

From the SVD

L21 =
[
U1 U2

] [S1 0
0 S2

] [
V T
1

V T
2

]
and its truncation at the desired model order n, the observability matrix is estimated from Γp = U1S

1/2
1 .

The output matrix C is then obtained by direct extraction of the first block row of Γp. The state transition
matrix A is obtained from the shift invariance property of Γp as the least squares solution A = Γ†↑Γ↓,
where Γ↑ and Γ↓ are obtained from Γp by removing the last and first block row, respectively. Finally, the
modal parameters are obtained from (5).



3. VARIANCE ESTIMATION

In [4, 5], a method for the variance estimation of modal parameters was developed for the output-only
covariance-driven subspace algorithm. In [8], this method was extended for the data-driven UPC algo-
rithm, amongst other data-driven and input/output algorithms, which is presented in the following.

The computation of the modal parameter covariance results from the propagation of sample covariances
on auto-covariance estimates of the outputs through all steps of the modal identification algorithm. These
sample covariances reflect in particular the unknown inputs due to non-measurable excitation sources
and the sensor noise, and they contribute in a non-trivial way to the covariance of the modal parameter
estimates. The propagation to the modal parameter estimates is based on the delta method [9], where the
analytical sensitivity matrices are obtained from perturbation theory [4].

Let ∆X be a first-order perturbation of a matrix-valued variable X . Then, for a function Y = f(X)
it holds vec(∆Y ) = JY,X vec(∆X), where JY,X = ∂vec(f(X))/∂vec(X), where vec(·) denotes the
column stacking vectorization operator. Subsequently, covariance expressions for the estimates satisfy

cov(vec(Ŷ )) ≈ ĴY,Xcov(vec(X̂))Ĵ TY,X . (8)

For simplicity of notation we dismiss the notation̂for an estimate in the following.

3.1. From data-driven to an equivalent covariance-driven formulation

In contrast to the covariance-driven algorithms, the number of columns of matrix H depends on the
number of data samples N for the data-driven algorithms. Hence, the matrix H does not converge to a
fixed limit for data-driven algorithms for N → ∞, which is a problem for the subsequent covariance
analysis. Instead, an equivalent covariance-driven form can be defined by

Hcov = HHT .

The resulting covariance-driven algorithm defined byHcov yields identical estimates of the observability
matrix Γp as the original data-driven algorithm. It is easy to see that both matrices Hcov and H indeed
have the same column space: let the thin SVD of H = USV T be given, then Hcov = HHT = US2UT ,
and hence both Hcov and H have the same left singular vectors (up to a change of basis). Hence, the
variance of the resulting modal parameter estimates is also identical between both algorithms.

From the definition of the UPC algorithm it follows thus

Hcov =
(
Y+Y−T

)(
Y−Y−T

)† (
Y+Y−T

)T
. (9)

Note that

R+ = Y+Y−T
, R− = Y−Y−T

(10)

are matrices containing output covariances. For these matrices it is easy to obtain a sample covariance
estimate, as detailed in the following section.

3.2. Sample covariance estimation

The starting point of the variance propagation to the modal parameters is the covariance of and between
the auto-covariance matrices that are involved in the subspace algorithm, i.e. R+ and R−. In par-
ticular we require the estimation of cov(vec(R+)), cov(vec(R−)) and cov(vec(R+), vec(R−)). This
computation follows the lines of the output-only covariance-driven algorithm, i.e. for cov(vec(R+)), as
described in detail in [4, 5], and is generalized in [8] as follows.

Divide the data matrices Y+ and Y− into nb blocks and normalize them with respect to their length, such
that
√
N Y+ =

√
Nb

[
Y+
1 Y+

2 . . . Y+
nb

]
,
√
N Y− =

√
Nb

[
Y−1 Y−2 . . . Y−nb

]
, (11)



where each block Y+
k and Y−k may have the same lengthNb, with nb ·Nb = N for simplicity. Each block

may be long enough to assume statistical independence between the blocks. On each of these blocks, the
respective auto-covariance estimate can be computed as Rk+ = Y+

k Y
−T
k and Rk− = Y−k Y

−T
k , which can

be assumed to be i.i.d., yielding

R+ =
1

nb

nb∑
k=1

Rk+, R− =
1

nb

nb∑
k=1

Rk− . (12)

It follows cov (vec(R∗)) = 1
nb

cov
(
vec(Rk∗)

)
, and the covariance between the auto-covariance matrices

can be computed from the usual sample covariance as

cov(vec(Ri), vec(Rj)) =
1

nb(nb − 1)

nb∑
k=1

(
vec(Rki )− vec(Ri)

)(
vec(Rkj )− vec(Rj)

)T
(13)

where i, j ∈ {+,−}.

3.3. Sensitivity and covariance ofH

In this section, the sensitivity of H is developed with respect to the underlying auto-covariance matrices
in their computation. It holds, from Eq. (9),H = R+R†−RT+, and thus [8]

∆Hcov = ∆R+R†−RT+ −R+R†−∆R−R†−RT+ +R+R†−∆RT+,

vec (∆Hcov) = JH,R
[
vec (∆R+)
vec (∆R−)

]
,

where JH,R =
[
R+R†− ⊗ Ipr + (Ipr ⊗R+R†−)Ppr,qr −R+R†− ⊗R+R†−

]
and Ppr,qr is a permuta-

tion matrix [8]. Then, it follows for the covariance

cov(vec(H)) = JH,R cov

([
vec(R+)
vec(R−)

])
J TH,R, (14)

where the blocks for the covariance matrix on the right side are computed in Eq. (13).

3.4. Covariance of modal parameters

From H, the modal parameters are obtained as described in Section 2.2.. The respective propagation of
the covariance of vec(H) to the modal parameters has been described in detail in [4, 5].

4. UNCERTAINTY EVALUATION FOR STABILIZATION DIAGRAM

In the previous section, the computational framework is given for variance estimation for the modal
parameters from the data-driven UPC subspace algorithm. Together with the framework of the fast un-
certainty computation algorithms in [5], a computationally efficient method has been developed for the
uncertainty estimation at different model orders for the entire stabilization diagram. Now the question
arises how to evaluate the global uncertainty of each mode, based on the alignments and their uncertain-
ties over different model orders.

Assume that the mode alignments have been correctly extracted from stable parts of the stabilization
diagram, and that biased estimates are rejected at model orders that are not stable. For each mode
alignment, the problem is then to obtain one estimate of the respective mode (frequency and damping
ratio) from the estimates at the different model orders, taking into account their uncertainties.

There are two connected steps:



1. Computation of the global mode estimate as a weighted mean of the estimates at the different
model orders. Weights are the covariance of each mode estimate.

2. Computation of the covariance of the global mode estimate.

Note that all mode estimates in each alignment are strongly correlated since they are computed on the
same data. So the second step needs to take these correlations between the different model orders into
account.

4.1. Uncertainty of each mode estimate

Each mode i at any model order is described by its frequency fi and damping ratio ξi. They are a function
of the measured output data and in particular of the output data covariances R1 and R2, and a resulting
projected Hankel matrixH as explained in the previous section. In particular, the sensitivities Jfi,R and
Jξi,R of each frequency fi and damping ratio ξi with respect to R1 and R2 yields an analytical relation
based on the formulas above, leading to[

∆fi
∆ξi

]
=

[
Jfi,R
Jξi,R

] [
vec (∆R+)
vec (∆R−)

]
. (15)

Then, the 2x2 covariance matrix of each mode (combined for frequency and damping ratio) is actually
computed through

Σi = cov

([
fi
ξi

])
=

[
Jfi,R
Jξi,R

]
cov

([
vec (R+)
vec (R−)

])[
Jfi,R
Jξi,R

]T
.

4.2. Weighted mean for different model orders

Let i = 1, . . . , nm be the estimates of the same mode at different model orders. They are weighted with
their covariance matrices, summed up and re-normalized, as follows:[
f̄
ξ̄

]
=

(
nm∑
i=1

Σ−1i

)−1( nm∑
i=1

Σ−1i

[
fi
ξi

])

4.3. Covariance of weighted mean

Since the estimates at the different model orders are strongly correlated, this correlation needs to be
taken into account when computing the covariance of the weighted mean. This correlation is indirectly
considered when relating the uncertainty of the weighted mean to the uncertainty of all the modal pa-
rameters, which is then related to the uncertainty of the output covariance uncertainties ∆R+ and ∆R−
as a common factor. In this computation, the sensitivities of all modal parameters at the different model
orders are taken into account.

We can rewrite the weighted mean as

[
f̄
ξ̄

]
=

(
nm∑
i=1

Σ−1i

)−1 [
Σ−11 Σ−12 . . . Σ−1nm

]


f1
ξ1
f2
ξ2
...

fnm

ξnm


.



With this equation, the uncertainty of the weighted mean can be linked to the uncertainty of the estimates
at each model order, i.e.

[
∆f̄
∆ξ̄

]
=

(
nm∑
i=1

Σ−1i

)−1 [
Σ−11 Σ−12 . . . Σ−1nm

]


∆f1
∆ξ1
∆f2
∆ξ2

...
∆fnm

∆ξnm


.

Plugging in Equation (15), the uncertainty of the weighted mean is linked to the common uncertainty of
the Hankel matrix, taking into account all the dependencies between the different model orders,

[
∆f̄
∆ξ̄

]
=

(
nm∑
i=1

Σ−1i

)−1 [
Σ−11 Σ−12 . . . Σ−1nm

]


Jf1,R
Jξ1,R
Jf2,R
Jξ2,R

...
Jfnm ,R
Jξnm ,R


︸ ︷︷ ︸

=Jall

[
vec (∆R+)
vec (∆R−)

]
.

With this relation, the covariance of the weighted mean follows readily as

cov

([
f̄
ξ̄

])
= Jall cov

([
vec (R+)
vec (R−)

])
J Tall.

5. APPLICATION

The algorithm for the uncertainty computation has been validated previously on Monte Carlo simulations
in [8], ensuring the correct computation of the uncertainty bounds in a numerical study.

In the following, we apply the algorithm to the Z24 Bridge [6, 10], a benchmark of the COST F3 Eu-
ropean network. The analyzed data is the response of the bridge to ambient excitation (traffic under the
bridge) measured in 154 points, mainly in the vertical and at some points also the transverse and lateral
directions, and sampled at 100 Hz. Because at most 33 sensors were available (counting one sensor for
each measured direction), 9 datasets have been recorded, each containing the measurements from 5 fixed
and 28 moving sensors, except dataset 5 containing only 22 moving sensors. Like this, altogether 251

Figure 1: Model of Z24 Bridge with sensor positions and directions.



sensors were mimicked. Each signal contains 65,535 samples. In Figure 1, the model of the bridge with
all sensor positions and directions is shown.

Applying the UPC algorithm on the first sensor setup of Z24 in a Matlab implementation, a stabilization
diagram is obtained in Figure 2. Selecting the first frequency and the respective damping ratios, a zoom
gives more detailed information on the estimates and their uncertainties over the different model orders
in Figure 3. This figure also includes the weighted mean of the frequencies and damping ratios of the
first mode obtained from the different model orders, as shown in Section 4..
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Figure 2: Stabilization diagram for first setup of Z24 Bridge with uncertainty bounds.
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Figure 3: Zoom on frequency (left) and damping ratio (right) estimates of the first mode. The red value on top is
the weighted mean over all model orders.

Finally, a stabilization diagram within an implementation in ARTeMIS Modal 5 [11] is shown in Figure
4. Confidence ellipsoids of each modal frequency and damping ratio pair can also be displayed in a



Frequency versus Damping diagram. Here the weighted mean values are presented as the center point
of the confidence ellipsoid, estimated from the covariance of the modal frequency and damping ratio
pair. In the diagrams presented in Figures 4 and 5, the ellipsoids present the 95% confidence bounds.
Basically, they indicate that with a repetition of the test the modal parameters will be located with 95%
confidence inside this ellipsoid.

Typically, these confidence ellipsoids are horizontally very thin, indicating that the modal frequencies
are more accurately estimated compared to the damping ratios. If the confidence ellipsoids are “tilting”
it indicates correlation between the modal frequency and the damping ratio, i.e. a large cross-covariance
between the two estimates.

Figure 4: Stabilization diagram for Z24 Bridge with confidence ellipsoid of fifth mode.

Figure 5: Confidence ellipsoids of first five modes.



6. CONCLUSION

In this paper, we have presented an efficient and automated method for the estimation of modal parame-
ter uncertainties with the data-driven UPC subspace algorithm. The uncertainty is obtained on the same
dataset as the underlying modal parameter estimate. We have proposed a procedure to take this uncer-
tainty into account in the computation of a global mode estimate from the stabilization diagram, where
the frequency and damping ratio estimates at the different model orders are weighted by their uncertain-
ties. Finally, the uncertainty of the global mode estimate is computed. The method has been applied to
the Z24 Bridge benchmark.
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[7] M. Döhler, F. Hille, L. Mevel, and W. Rücker. Structural health monitoring with statistical methods
during progressive damage test of S101 Bridge. Engineering Structures, 69:183–193, 2014.
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