
x( tk�1 ) � Ax( tk ) � Bu( tk )

y( tk ) � Cx( tk ) � Du( tk )
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(2.1)

2 Introduction of Discrete-Time Systems

This chapter concerns an important subclass of discrete-time systems, which are the
linear and time-invariant systems excited by Gaussian distributed stochastic
processes. In the following, it will be shown how these systems can be represented
in state space or equivalently by ARMAV models. The modelling of linear time-
invariant stochastic systems using univariate ARMA models has been covered
extensively in many textbooks such as Box et al. [16], Harvey [36], Harvey [37] and
Pandit et al. [88]. It is, however, only recently that modelling using multivariate
ARMAV models has been covered systematically, see e.g. Aoki [11], Gevers et al.
[29], Hannan et al. [33],  Pandit [84], Pi et al. [92] and Piombo et al. [93]. Multi-
variate state space systems have been applied in e.g. control engineering for several
decades, and the analytical manipulations and numerical processing of these systems
have been covered extensively in many textbooks, see e.g. Goodwin et al. [31],
Hannan et al. [33], Kailath [48], Ljung [71] and Middleton et al. [79].

Section 2.1 will introduce the state space representation of a linear and time-invariant
discrete-time system excited by a Gaussian stochastic excitation. Besides the applied
Gaussian stochastic excitation, a system may also be affected by noise or disturbance.
In section 2.2, it is therefore investigated how to account for disturbance by means
of a so-called innovation state space representation. Section 2.3, will then show how
the state space system presented in section 2.1 can be converted to an equivalent
ARMAV model. Similarly, in section 2.4 it is shown how the innovation state space
representation presented in section 2.2 can be equivalently represented by an
ARMAV model. The conversions from state space to the particular ARMAV models
are unique. However, there are many ways to realise ARMAV models in state space,
i.e. ways to select an internal structure of the state space representation. In section 2.5
one of these realizations will be presented. 

2.1 Modelling of Discrete-Time Systems

In this section a state space representation of a stochastically excited discrete-time
system is introduced. For simplicity, it will be assumed that the discrete-time system
has as many inputs as there are outputs, i.e. that the dimension of the input process
u(t ) is the same as the dimension of the output process y(t ).k k

2.1.1 The Stochastic State Space System

A linear and time-invariant discrete-time system can be represented in state space as



E u( tk ) � 0

E u( tk )uT( tk�n ) � ��(n )

E y( tk ) � 0 , E x( tk ) � 0

E y( tk )yT( tk�n ) � �(n ) , E x( tk )xT( tk�n ) � �(n )
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(2.2)

(2.3)

The first equation is called the state equation and models the dynamic behaviour of
the discrete-time system. The second equation is called the observation equation,
since this equation controls which part of the output of the representation is observed.
The input process u(t ) is assumed to be a zero mean stationary Gaussian white noise,k

i.e.

where �(n) is the Kronecker Delta. The dimension of u(t ) is assumed to be p × 1,k

which implies that the dimension of the covariance matrix � is p × p. In the following
the statistical properties  in (2.2) will be abbreviated NID(0,�). Since (2.1) only
involves linear operations the state vector process x(t ) of the representation and thek

output process y(t ) will also be zero-mean Gaussian distributed processes if thek

initial state vector is zero-mean, i.e.

The statistical properties of these two processes are therefore fully described by the
covariance functions �(n) and �(n). Following the assumption made in the beginning
of this section the dimension of y(t ) is p × 1. The dimension of the state vector x(t )k k

is assumed to be m × 1, with m � p. Since the state vector has the dimension m, the
state space representation is said to be m-dimensional. 

Based on the dimensions of the input, state, and output vectors the dimensions of the
system matrices are:

� Transition matrix A : dim = m × m
� Input matrix B : dim = m × p
� Observation matrix C : dim = p × m
� Direct term matrix D : dim = p × p

The state space representation (2.1) of a discrete-time system is called a stochastic
state space system, due to the stochastic input that results in a stochastic response. If
a particular parameterization of the system matrices has been specified, (2.1) is
referred to as a stochastic state space realization. In most cases the direct term, Du(t ),k

in the observation equation will be zero. However, there might be cases where this
term is needed. As an example: If the accelerations of a sampled Gaussian white
noise excited second-order system are extracted, it will be necessary to add a direct
term, see Hoen [38]. Even though such a situation will not occur in this thesis, the
presence of a direct term will be allowed for completeness in the following analysis.

A solution of (2.1) for y(t ), l � 0, can be obtained by recursive substitutions of itselfk+l

to yield



y( tk� l ) � CAl x( tk ) � �
l

j
1
CAl	j Bu( tk�j	1 ) � Du( tk�l )

u( tk ) � NID(0 ,� ) , x( tk ) � x0

x1( tk�1 ) � A1 x1( tk ) � B1 w( tk )

y( tk ) � C1 x1( tk ) � D1 w( tk )

x2( tk�1 ) � A2 x2( tk ) � B2 u( tk )

w( tk ) � C2 x2( tk ) � D2 u( tk )

x( tk ) �

x1( tk )

x2( tk )

x1( tk�1 ) � A1 x1( tk ) � B1 C2 x2( tk ) � D2 u( tk )

x2( tk�1 ) � A2 x2( tk ) � B2 u( tk )

y( tk ) � C1 x1( tk ) � D1 C2 x2( tk ) � D2 u( tk ) )
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(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

The solution is split into a homogeneous part, which is represented by the first right-
hand term, and a particular part represented by the second right-hand term.

2.1.2 Modelling of a Nonwhite Excitation

It is also possible to use (2.1) as a representation of a linear and time-invariant
discrete-time system that is excited by nonwhite Gaussian distributed excitation. The
only requirement is that the nonwhite Gaussian distributed stochastic input can be
assumed to be generated from a linear and time-invariant shaping filter, see e.g.
Melsa et al. [77]. Let the following system that is excited by a nonwhite Gaussian
distributed input be represented by the following state space system

and assume that the nonwhite input w(t ) can be obtained by filtering Gaussian whitek

noise u(t ) through a linear and time-invariant shaping filter of the formk

These state space systems (2.5) and (2.6) are coupled, and they can be represented by
a single state space system by defining the following augmented state vector

Insert the observation equation of (2.6) into the state equation of (2.5) and stack the
obtained relation on top of the state equation of (2.6). Further, insert the observation
equation of (2.6) into the observation equation of (2.5). In other words



A �

A1 B1 C2

0 A2

, B �

B1 D2

B2

, C � C1 D1 C2 , D � D1 D2
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(2.9)

It is seen that the nonwhite input w(t ) has been eliminated. Introducing thek

augmented state vector in (2.8), it is also seen that a state space system in the
standard format is obtained, i.e. a system excited by Gaussian white noise. The
system matrices of this augmented representation are defined as

So in conclusion:

� If a linear and time-invariant discrete-time system is subjected to a
stochastic input, that can be assumed to be generated by filtering Gaussian
white noise through a linear and time-invariant shaping filter, then it will
always be possible to represent the system by a Gaussian white noise
excited state space system.

Since it is a typical assumption that the excitation of a civil engineering structure can
be modelled as filtered Gaussian white noise, see Hoen [38], Ibrahim [41], Kozin et
al. [68], Melsa et al. [77] and Tajimi [106], the state space representation (2.1) is
assumed to be fully capable of describing the linear and time-invariant dynamic
behaviour of such a structure.

2.1.3 Properties of Stochastic State Space Systems

A linear and discrete-time system can be realised in state space in a number of ways.
Due to this non-uniqueness care must be taken with regards to the parameterization
of the system matrices and the dimension of the state space. If the dimension is too
small there will most certainly be an information loss, compared to the system that
is being modelled. On the other hand, if the dimension of the state space is too large,
the state space realization will contain redundant information. Any of these cases
should of course be avoided. Therefore, a realization should have a minimal state
space dimension, where all modes in the system can be observed in the output, and
excited by an appropriate input. Such a realization is called minimal. A realization
is only minimal if it is observable and reachable, see Kailath [48]. 



Q o(m ) �

C

CA

.

.

CAm	1

, Q r(m ) � B AB . . Am	1B

x̃( tk ) � Tx( tk )

x̃( tk�1 ) � Ã x̃( tk ) � B̃u( tk )

y( tk ) � C̃ x̃( tk ) � D̃u( tk )

Ã � TAT	1 , B̃ � TB , C̃ � CT	1 , D̃ � D

x̃( tk )
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(2.10)

(2.11)

(2.12)

(2.13)

Definition 2.1 - Observability and Reachability of a State Space Realization

An m-dimensional state space system is observable and reachable if the observability matrix
Q (m), and the reachability matrix Q (m), defined aso r

both have full rank m, see Kailath [48]. If a realization is observable, it is in principle possible
to observe all dynamic modes of it, and if it is reachable, it is possible to transfer any initial
state x(t ) to an arbitrary state x(t ) in not more than m steps provided that the reachabilityk k+m

matrix Q (m) is non-singular, i.e. has full rank m. ar

The observability and reachability matrices are very important in many parts of
system theory and system identification. One of the important properties of minimal
state space systems is that one realization can be uniquely transformed to another by
a similarity transformation.

Definition 2.2 - The Similarity Transformation of Minimal Realizations

Consider the m-dimensional state space system (2.1), define the following linear transforma-
tion of the state vector 

where T is an m × m non-singular transformation matrix. The state space system (2.1) can then
be expressed in terms of the new state vector  as

with the new system matrices defined as

This linear transformation of one realization to another is called a similarity transformation.
a

Similarity transformations are frequently used in system theory. One of the well-
known similarity transformations is the eigenvalue / -vector decomposition, i.e. the
modal decomposition, see e.g. Kailath [48].



E
w( tk )

v( tk )
� 0 , E

w( tk )

v( tk )
w T( tk�n ) vT( tk�n ) �

Q S

ST R
�(n )

x( tk�1 ) � Ax( tk ) � Bu( tk ) � w( tk )

y( tk ) � Cx( tk ) � Du( tk ) � v( tk )
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(2.14)

(2.15)

2.2 Modelling of Discrete-Time Systems Affected by Noise

Besides the applied input to the state space system (2.1), there might be other inputs
that in a more uncontrollable way contribute to the system response. This undesirable
influence is characterized as disturbance or noise. In system identification using
measured system response disturbance might be caused by different phenomena. The
most obvious phenomena are noise generated by the sensors, and noise arising from
roundoff errors during the A/D conversion. Disturbance might also be caused by an
inadequacy of using a linear and time-invariant model. Such an inadequacy could be
caused by a small non-linearity in the true system or by non-stationary excitation. In
any case, noise will always be present in measured data and should therefore always
be taken into account. It is therefore necessary to extend the stochastic state space
system (2.1) with a noise model.

2.2.1 Modelling of Disturbance

In the context of representing linear and time-invariant discrete-time systems in state
space, the different kinds of noise are usually divided into two categories:

� Process noise.
� Measurement noise.

The process noise should be regarded as one equivalent noise term that models all the
noise sources causing the linear and time-invariant state space modelling to be
inadequate. This could be the above-mentioned small non-linearities in the true
system. The measurement noise should in a similar manner be regarded as an
equivalent noise term that includes all the noise sources that disturb the measure-
ments. This could be the above mentioned A/D roundoff errors and the sensor noise.

It will be assumed, that the process noise can be described by a zero-mean Gaussian
white noise process w(t ), and that the measurement noise in a similar way can bek

described by a zero-mean Gaussian white noise process v(t ). The joint distributionk

of these two processes is given by

The process noise that disturbs the system should be added to the state equation in
(2.1), whereas the measurement noise should be added to the observation equation.
In other words



x̂( tk |tk	1) � E x( tk ) |{y( t0 ), y( t1 ), ... , y( tk	1 )}T

� E x( tk ) |Y k	1

ŷ( tk |tk	1 ) � E y( tk ) |Y k	1

� E Cx( tk )�Du( tk )�v( tk ) |Y k	1

� Cx̂( tk |tk	1 )

x̂( tk | tk	1 )

ŷ( tk | tk	1 )

ŷ( tk | tk	1 ) x̂( tk | tk	1 )
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(2.16)

(2.17)

This implies that the dimensions of w(t ) and v(t ) are m × 1 and p × 1, respectively.k k

It also implies that the covariance matrices describing the disturbance have the
following dimensions:

� Q : dim = m × m
� R : dim = p × p
� S : dim = p × m

The problem of noise contaminated systems is that it is only possible to predict the
response. For state space systems, this prediction is accomplished by the construction
of the associated Kalman filter.

2.2.2 The Steady-State Kalman Filter

Assume that measurements y(t ) are available and that they are zero mean andk

Gaussian distributed. Also assume that the matrices {A, B, C, D, �, Q, R, S} are
known. It is realized that in system identification of civil engineering structures all
these matrices are unknown, and some of them are impossible to determine.
However, in order to carry out the statistical analysis, it is formally assumed that they
are known. Now, since it is only possible to predict the system response optimal
predictors of the state of the system and of the system response are needed. 

Definition 2.3 - Optimal Predictor of the State Space System

The optimal in least-square sense one-step-ahead predictor of the state vector is
defined as the conditional mean of x(t ), given all previous measurements, collected in a vectork

Y  defined as the following sequence Y  = { y(t ), y(t ), ... , y(t ) } .  In other wordsk-1 k-1 T
0 1 k-1

The optimal one-step-ahead predictor of the measured response y(t ) is defined in ak

similar manner as the conditional mean of y(t ), given Y k
k-1

As seen  is related to  through the observation matrix C. a



�( tk ) � x̂( tk | tk	1 ) � x( tk )

e( tk ) � y( tk ) � ŷ( tk | tk	1 )

� y( tk ) � Cx̂( tk |tk	1 )

Y k
� {(Y k	1 )T , y( tk )}T

x̂( tk | tk	1 )

x̂( tk | tk	1 )

ŷ( tk | tk	1 )

y(tk) e(tk)

x̂( tk | tk	1 )
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(2.18)

(2.19)

(2.20)

Given the system matrices of the state space system in (2.15), the measurements y(t ),k

and the stochastic input u(t ), the basic idea of Kalman filtering is to predict the statek

for x(t ) in the sense that the state prediction error is as small as possible.k

This state prediction error is defined in the following.

Definition 2.4 - State Prediction Errors

Let JJ(t ) represent the part of x(t ) that cannot be predicted from Y  by ask k
k-1

This part is termed the state prediction error. a

Since only observable states can be predicted, and since it must be possible to predict
the complete state vector, the system has to be observable, see definition 2.1. Also,
because it is only possible to predict the response of the system itself, there will
always be a part of a measurement y(t ) that cannot be predicted by . Thisk

part is termed the innovation.

 
Definition 2.5 - Innovations

Let e(t ) represent the part of y(t ) that cannot be predicted from Y  ask k
k-1

Thus e(t ) represents the new information in not contained in Y . For this reason isk
k-1

called the innovation. Since y(t ) is assumed zero mean and Gaussian distributed e(t ) is a zero-k k

mean Gaussian white noise process that is fully described by the covariance matrix ��. In the
following these statistical properties will be abbreviated NID(0,��).  a

In what follows, it is assumed that all transient behaviour has faded away and that a
steady state exists. From Y  the sequence Y  can then be expressed ask-1 k

Combining this relation with definition 2.5 and lemma A.5 in appendix A, which
concerns the properties of orthogonal projections of Gaussian stochastic variables,
the following relations for the predictor  are obtained



x̂( tk�1 | tk ) � E[x( tk�1 ) |Y k ]

� E[x( tk�1 ) |Y k	1,e( tk )]

� E[x( tk�1 ) |Y k	1] � E[x( tk�1 ) |e( tk )]

� x̂( tk�1 | tk	1 ) � E[x( tk�1 )eT( tk )] E[e( tk )e T( tk )] 	1e( tk )

� x̂( tk�1 | tk	1 ) � Ke( tk )

x̂( tk�1 | tk ) � Ax̂( tk | tk	1 ) � Ke( tk )

e( tk ) � y( tk ) � Cx̂( tk | tk	1 )

K � APC T
� B�DT

� S �
	1

� � CPC T
� D�DT

� R

P � APA T
� B�BT

� Q � K�K T
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(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

where the matrix K is called the steady-state Kalman gain. Based on the last relation
in (2.21), it is possible to formulate the steady-state Kalman filter that is associated
with the noise affected state space system in (2.15).

Theorem 2.1 - The Steady-State Kalman Filter of a Stochastically Excited
System

The steady-state optimal state predictor, described in terms of the Kalman filter of the state
space system with stochastic input, is given by

The first equation is called the update equation and the last equation the correction equation.
K is the Kalman gain matrix, that includes the description of the disturbance on the system as
well as the Gaussian white noise excitation. This matrix is defined as

with �� being the covariance matrix of the innovations e(t ) given byk

The covariance matrix P is obtained as the positive semi definite solution to the algebraic
Riccati equation 

Proof: 

The following proof is a modified version of the traditional Kalman filter proofs found in e.g.
Goodwin et al. [31] and Hannan et al. [33]. The modification lies in the fact that the excitation
is usually assumed known and therefore deterministic. Assume that the Gaussian white noise



P � E { x̂( tk | tk	1 )�x( tk )}{ x̂( tk | tk	1 )�x( tk )}T
� � � �

� � E x( tk )x T( tk ) , � � E x̂( tk | tk	1 ) x̂T( tk | tk	1 )

x̂( tk�1 | tk	1 ) � E x( tk�1 ) |Y k	1

� E Ax( tk ) � Bu( tk ) � w( tk ) |Y k	1

� Ax̂( tk | tk	1 )

� � E Ax̂( tk | tk	1 )�Ke( tk ) × Ax̂( tk | tk	1 )�Ke( tk ) T

� A�AT
� K�K T

� � E Ax( tk )�Bu( tk ) � w( tk ) × Ax̂( tk )�Bu( tk ) � w( tk ) T

� A�AT
� B�B T

� Q

E[x( tk�1 )eT( tk ) ] � E[ Ax( tk )�Bu( tk )�w( tk ) ×

C [x( tk )� x̂( tk | tk	1 )]�Du( tk )�v( tk ) T ]

� AE[x( tk ) x( tk )� x̂( tk | tk	1 ) T ]CT
�

BE[u( tk )u T( tk ) ]DT
� E[w( tk )vT( tk ) ]

� APCT
�B�DT

� S

x̂( tk | tk	1 ) x̂( tk | tk	1 )
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(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

excitation u(t ) is uncorrelated with the disturbance, i.e. with w(t ) and v(t ). The steady-statek k k

prediction error covariance P is then defined as 

By taking the conditional mean of the state space equation of (2.15) given the measurements
Y , the following relation is obtainedk-1

Substituting (2.27) into (2.21) gives the update equation in (2.22).  From (2.22) the following
expectation is obtained

and from (2.15) $$ is given by

Subtracting (2.29) from (2.28) and using (2.26) gives (2.25).  Finally, the covariance
E[x(t )e (t )] in (2.21) is given byk+1 k

T

since x(t ) - is orthogonal to . The innovation covariance matrix is givenk

by



� � E[e( tk )eT( tk ) ]

� E [ C [x( tk ) � x̂( tk | tk	1 )] � Du( tk ) � v( tk ) ×

C [x( tk ) � x̂( tk | tk	1 )] � Du( tk ) � v( tk ) T ]

� CPC T
� D�DT

� R

x̂( tk�1 | tk ) � Ax̂( tk | tk	1 ) � Ke( tk ) , e( tk ) � NID(0 ,� )

y( tk ) � Cx̂( tk | tk	1 ) � e( tk )

y( tk�l ) � CAl x̂( tk | tk	1 ) � �
l

j
1
CAl	j Ke( tk�j	1 ) � e( tk�l )

e( tk ) � NID(0 ,� ) , x̂( tk | tk	1 ) � x̂0 , E [ x̂0 ] � 0

w(tk) v(tk)
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(2.31)

(2.32)

(2.33)

By combining (2.30) with ��, the Kalman gain in (2.23) is obtained. Inserting (2.19) in
definition 2.5 results in the correction equation of the Kalman filter recursion in (2.22). a

Thus, knowing the measured output y(t ), the system matrices {A, B, C, D} and thek

covariance matrices {�, Q, R, S}, it is possible to calculate the covariance matrix P,
the Kalman gain K, and the innovation covariance matrix � before the filtering starts.

2.2.3 The Innovation State Space System

In system identification, it is the system matrices that are unknown. This means that
the above Kalman filter is unknown. However, the filter reveals how the state space
system that accounts for the presence of noise should look like. This special state
space system is known as the innovation state space system, see e.g. Ljung [71]. 

This state space system is obtained from the steady-state Kalman filter by rearranging
the correction equation of (2.22). This system is assumed to be driven by a known
innovation process, which is obtained from contributions of the stochastic input u(t ),k

and the disturbance represented by  and . The dynamic behaviour of the
system is still described by the system matrices A and C, as in the noise-free case.
This implies that e.g. the observability matrix Q (m) of an m-dimensional innovationo

state space system also is given by (2.10). On the other hand, to obtain the
reachability matrix Q (m) of the innovation system the input matrix B in (2.10) mustr

be substituted by the Kalman gain K. Similarity transformations, can still be
performed according to definition 2.2 by setting B = K and D = I. A solution of (2.32)
for y(t ), l � 0, can be obtained in a similar fashion as (2.4) by recursive substitu-k+l

tions of itself to yield



y( tk ) � A1 y( tk	1 ) � ... � A n y( tk	n ) � f (u( tk ) )

u( tk ) � NID(0 ,� )

y( tk ) � yh( tk ) � yp( tk )

y( tk ) � A1 y( tk	1 ) � ... � A n y( tk	n ) � 0

yp(tk)
yh(tk)
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(2.34)

(2.35)

(2.36)

Again the solution is split into a homogeneous part, which is represented by the first
right-hand term, and a particular part represented by the second right-hand term. 

So in conclusion:

� The innovation state space representation (2.22) models the dynamic
behaviour of a linear and time-invariant discrete-time system, subjected to
Gaussian white noise excitation and Gaussian white noise disturbance.
Therefore, it is a more general description than the representation given in
(2.1). 

2.3 ARMAV Modelling of Discrete-Time Systems

This section shows how the stochastic state space system is related to a stochastic
difference equation system. If the applied excitation is Gaussian white noise, this
stochastic difference equation system is equivalent to the ARMAV model defined in
(1.2). This section will only focus on representing a discrete-time linear and time-
invariant system that is not affected by disturbance. The inclusion of the disturbance
will be shown in the next section.

Just as a continuous-time linear and time-variant system can be represented by a
differential equation system, it is possible to represent a discrete-time linear and time-
invariant system by a difference equation system. For a p-variate system the equation
is

The system response y(t ) is now described by a homogeneous part, which is an nth-k

order auto-regressive matrix polynomial, and a nonhomogeneous part being a
function of the Gaussian white noise process u(t ). It is assumed that y(t ) and u(t )k k k

are vectors of dimension p × 1, which implies that all the n auto-regressive
coefficient matrices A  will have the dimensions p × p. It is claimed that a generali

solution of (2.34), for an arbitrary k � 0, can be represented on the following form

with  being a fixed particular solution, i.e. one among many solutions, and
 a general solution of the homogeneous equation



y( tk ) � �A1 y( tk	1 ) � ... � A n y( tk	n )

yh( tk�l ) � CAl x( tk ) ,
l � 0, 1, ...

x( tk ) � x0

CA n
� A1 CAn	1

� ... � An	1 CA � A n C x( tk ) � 0

CA n
� A1 CAn	1

� ... � An	1 CA � A n C � 0

y( tk ) � A1 y( tk	1 ) � A2 y( tk	2 ) � ... � A n y( tk	n ) �

B0 u( tk ) � B1 u( tk	1 ) � ... � B n u( tk	n )

u( tk ) � NID(0 ,� )

yh(tk)
yp(tk)
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(2.37)

(2.38)

(2.39)

(2.40)

(2.41)

Since y(t ) in the homogeneous case can be sequentially computed byk

the set of solutions of the homogeneous equations is a linear space of dimension np.
The general solution is therefore given by (2.4) for an m-dimensional state vector,
where m = np, see Gohberg et al. [30]. The first part of (2.4) is equal to  and
the last part to  in (2.35). Since the general solution of a minimal system is not
restricted to any specific realization, the following relations are in principle valid for
any arbitrary m-dimensional minimal realizations. This is due to definition 2.2,
stating that all minimal realizations are similar. From (2.4) the general solution to the
homogeneous part of the solution is given by

Inserting (2.38) into (2.36) yields

which can only be fulfilled for an arbitrary choice of x(t ), if the contents inside thek

parentheses equals zero, i.e.

This relation reveals an important link between the auto-regressive coefficient
matrices and the system matrices A and C. The importance becomes clear in the
following theorem.

Theorem 2.2 - The ARMAV(n,n) Model - Without Noise Modelling

A minimal realization of the state space system (2.1), described by {A, B, C, D, ��}, can be
represented by an ARMAV(n,n) model, defined as

if the state space realization fulfils the dimensional requirement that the state dimension m,
divided by the number of channels p, equals an integral value n. The n auto-regressive matrix
coefficients, which all have the dimensions p × p, are then given by



An An	1 . . A2 A1 � �CA n Q	1
o (n )

Bn Bn	1 . . B1 B0 � An An	1 . . A1 I T(n�1)

T(n�1) �

D 0 . . 0 0

CB D . . 0 0

. . . . . .

. . . . . .

CAn	2B CAn	3B . . D 0

CAn	1B CAn	2B . . CB D

A n An	1 . . A1 Qo(n ) � �CA n

A n An	1 . . A1 � �CA n Q	1
o (n )

u(tk)

Qo(n) Qo(n)
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(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

The n+1 moving average matrix coefficients, also of dimensions p × p, are given by 

with T(n+1) defined as

where it should be noticed that B  = D. The Gaussian white noise input process is0

unaffected by this transformation. 

Proof: 

The auto-regressive coefficient matrices are obtained from (2.40) by the following
rearrangement

where the observability matrix, defined in (2.10) has been introduced. It is seen that the auto-
regressive coefficient matrices can be determined from the system matrices A and C as

This equation is equal to (2.42). The auto-regressive coefficient matrices can only be
determined for state space realizations where is non-singular. If  is singular,
methods for determination of the coefficient matrices may be found in Gawronski et al. [24]
and Kailath [48]. The general solution (2.4) can be used to find an expression for f(u(t )) ink

the following way. From the observation equation of (2.1) and (2.4), construct the following
set of equations



y( tk	n )

y( tk	n�1 )

.

.

y( tk	1 )

y( tk )

�

C

CA

.

.

CAn	1

CA n

x( tk	n ) �

D 0 . . 0 0

CB D . . 0 0

. . . . . .

. . . . . .

CAn	2B CAn	3B . . D 0

CAn	1B CAn	2B . . CB D

u( tk	n )

u( tk	n�1 )

.

.

u( tk	1 )

u( tk )

Y( tk	n , tk ) � Qo(n�1)x( tk ) � T(n�1)U( tk	n , tk )

P � An An	1 . . A1 I

PY( tk	n , tk ) � PQo(n�1)x( tk ) � PT(n�1)U( tk	n , tk )

� PT(n�1)U( tk	n , tk )

u(tk) u(tk)
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(2.47)

(2.48)

(2.49)

(2.50)

which can compactly be written as

Now introduce the matrix containing the auto-regressive coefficient matrices obtained from
(2.42)

and notice that (2.40) can be written as PQ (n+1) = 0. Multiplying (2.48) from the left byo

(2.49) then yields

The left hand-side of (2.50) is exactly the auto-regressive part of the difference equation
system in (2.34), and the right-hand term is therefore equivalent to f(u(t )), which is an nthk

order matrix polynomial in . Since  is a Gaussian white noise this matrix polynomial
is a true moving average, which means that (2.50) really is an ARMAV(n,n) model. a

It is seen that it is possible to establish an equivalent ARMAV model to the minimal
stochastic state space system. This ARMAV model is independent of the actual
realization, i.e. no matter how a p-variate linear and time-invariant discrete-time
system subjected to Gaussian white noise excitation is realized, the equivalent
ARMAV model will always be the same.



y( tk ) � A	1(q )B(q )u( tk ) � H(q )u( tk )

A(q ) � I � A1 q 	1
� A2 q 	2

� ... � An q 	n

B(q ) � B0 � B1 q 	1
� B2 q 	2

� ... � Bn q 	n

y( tk ) � A1 y( tk	1 ) � A2 y( tk	2 ) � ... � A n y( tk	n ) �

e( tk ) � C1 e( tk	1 ) � ... � C n e( tk	n )

e( tk ) � NID(0 ,� )
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(2.51)

(2.52)

So in conclusion

� Any stochastic state space system, where the state space dimension m
divided by the number of observed output p equals an integral value n can
be represented by an ARMAV model if the observability matrix Q (n) is non-o

singular

The ARMAV model can also be defined in terms of its transfer function H(q)
introduced in (1.2) as

where A(q) and B(q) are the auto-regressive and the moving average matrix
polynomials. As was the case for the stochastic state space system (2.1), this
ARMAV model is not very useful in practical system identification. An ARMAV
model based on the innovation state space system will be more useful in this context,
since such a model will take the presence of disturbance into account.

2.4 ARMAV Modelling of Discrete-Time Systems Affected by
Noise

Establishing an ARMAV model on the basis of the innovation state space system is
quite simple, since all the steps involved in such a conversion are the same as shown
in the previous section.  The proof of the following theorem will therefore resemble
the proof of theorem 2.2, and will therefore not be given.

Theorem 2.3 - The ARMAV(n,n) Model - With Noise Modelling

A minimal realization of the innovation state space system (2.32), described by {A, K, C, ��},
can be equivalently represented by an ARMAV(n,n) model, defined as

if the state space realization fulfils the dimensional requirement that the state dimension m,
divided by the number of channels p, equals an integral value n. The n auto-regressive matrix
coefficients, all of dimension p × p, are given by



An An	1 . . A2 A1 � �CA n Q	1
o (n )

Cn Cn	1 . . C1 I � An An	1 . . A1 I T(n�1)

T(n�1) �

I 0 . . 0 0

CK I . . 0 0

. . . . . .

. . . . . .

CAn	2K CAn	3K . . I 0

CAn	1K CAn	2K . . CK I

y( tk ) � A	1(q )C(q )e( tk ) � H(q )e( tk )

A(q ) � I � A1 q 	1
� A2 q 	2

� ... � An q 	n

C(q ) � I � C1 q 	1
� C2 q 	2

� ... � Cn q 	n
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(2.53)

(2.54)

(2.55)

(2.56)

The n moving average matrix coefficients, also of dimensions p × p, are given by 

with T(n+1) defined as

The innovation process e(t ) is unaffected by this transformation, and is still described thek

covariance matrix ��. a

This ARMAV model can also be defined in terms of its transfer function H(q) as

where A(q) and C(q) are the auto-regressive and the moving average matrix
polynomials. In chapter 5, system identification of multivariate linear and time-
invariant discrete-time systems will be considered, and the models that will be used
are the innovation state space system and the ARMAV model derived in this section.
However, it is still important to be aware of the difference between the ARMAV
model that accounts for the presence of noise and the model that does not. This is
shown in chapter 4.

2.5 A State Space Realization of an ARMAV Model

Until now, the actual parameterization of the state space system has not been
considered. This has not been necessary since the noise modelling and the conversion
to ARMAV models are both procedures that are independent of the choice of
realization. However, to convert an ARMAV model to state space makes it necessary



y( tk ) � �
�

j
0
h( j )u( tk	 j ) , u( tk ) � NID(0 ,� )

H(q ) � �
�

j
0
h( j )q 	j

I � A1 q 	1
� ... � A n q 	n

�
�

j
0
h( j )q 	j u( tk ) �

B0 � B1 q 	1
� ... � B n q 	n u( tk )
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(2.57)

(2.58)

(2.59)

to choose a realization. There is no unique way of doing this conversion. The choice
of a state space realization may not be easy. If the realization is used as part of some
algebraic manipulations, it is a good idea to choose a realization that is easy to
construct from the auto-regressive and moving average coefficient matrices. On the
other hand, if the realization is used in system identification software, the realization
must be well-conditioned in order to be numerically efficient. In this section a state
space realization that is easy to obtain from the coefficient matrices of the ARMAV
model will be presented. This realization is used on several occasions in chapters 3-6
and is known as the observability canonical state space realization. This realization
is constructed on the basis of the auto-regressive coefficient matrices and the impulse
response function of the ARMAV model. 

2.5.1 The Impulse Response Function of ARMAV Models

The ARMAV(n,n) model can equivalently be defined as a convolution of its impulse
response function h(j) and the Gaussian white noise input.

In this section, relations involving the impulse response function of this model will
be given. Based on these relations, it is possible to construct the observability
canonical state space realization. The p × p transfer function defined in (2.51) can
also be expressed in terms of the impulse response function and the delay operator
q as

If y(t ) is substituted in (2.51) with (2.57) and (2.58) the following relation is obtainedk

By comparing the coefficients of equal powers of q, the following relationships
between the coefficient matrices of the ARMAV model and its impulse response
function h(k), for k = 0 to n,  can be obtained



h(0) � B0

h(1) � A1 h(0) � B1

h(2) � A1 h(1) � A2 h(0) � B2

.

.

h(n ) � A1 h(n�1) � ... � A n h(0) � B n

h(k ) � � A1 h(k�1) � ... � A k h(0) � B k , 0�k�n

h(k ) � � A1 h(k�1) � ... � A n h(k�n ) , k>n

h(1)

h(2)

.

.

h(n )

�

I 0 . . 0 0

A1 I . . 0 0

. . . . . .

. . . . . .

An	1 An	2 . . A1 I

	1 B1�A1 B0

B2�A2 B0

.

.

B n�A n B0

y( tk�m ) � �
�

j
0
h( j )u( tk�m	j ) � �

m	1

j
0
h( j )u( tk�m	j ) � �

�

j
m

h( j )u( tk�m	j )
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(2.60)

(2.61)

(2.62)

(2.63)

(2.64)

Based on (2.60) the following two recursive relations can be derived

The first relation should be used if k � n, and the second if k > n. If the moving
average polynomial is of lower order than the order of the auto-regressive polyno-
mial, given by n, the remaining moving average coefficient matrices, B  are zeroedi

in the above expressions. The last n equations of (2.60) can be rearranged as

which can be used for initialization of (2.61) and (2.62). 

2.5.2 The Observability Canonical State Space Realization

The above relations can be used for prediction of the most probable value of the
response y(t ) given the u(t ) and y(t ), for time steps s � k. From (2.57) it can bek+m k s

verified that



ŷ( tk�m | tk ) � �
�

j
m

h( j )u( tk�m	j )

ŷ( tk�m | tk ) � �
�

j
m�1
h( j )u( tk�m	j ) � h(m )u( tk )

� ŷ( tk�m | tk	1 ) � h(m )u( tk )

y( tk ) � ŷ( tk | tk	1 ) � B0 u( tk )

ŷ( tk�m | tk ) � �
�

j
m

h( j )u( tk�m	j )

� �
�

j
m

��
n

i
1
A i h( j� i ) � B m u( tk�m	j )

� ��
n

i
1
A i �

�

j
m

h( j� i )u( tk�m	j ) � Bm u( tk )

� ��
n

i
1
A i ŷ( tk�m	i | tk ) � Bm u( tk )

ŷ( tk�m | tk ) � ��
n

i
1
A i ŷ( tk�m	i | tk	1 ) ��

n

i
1
A i h(m�i )u( tk ) � Bm u( tk )

� ��
n

i
1
A i ŷ( tk�m	i | tk	1 ) � h(m )u( tk )

u(tk�1) u(tk�m)

ŷ( tk�m | tk )

ŷ( tk | tk )
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(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

The first sum has zero mean and it only involves inputs to and is as
such independent of what has happened up to the time t . The second sum is knownk

at the time t  and the conditional mean  of y(t ), given response y(t ), fork k+m s

time steps s � k, is as such equal to

This equation can be formulated as

and for m = 0 this equation is equal to

since the most probable value of is y(t ) itself. If (2.65) is combined withk

(2.61), and if m�n the following result can be obtained

Inserting this result into (2.66) yields



x( tk�1 ) � Ax( tk ) � Bu( tk ) , u( tk ) � NID(0 ,� )

y( tk ) � Cx( tk ) � Du( tk )

A �

0 I . . 0 0

0 0 . . 0 0

. . . . . .

. . . . . .

0 0 . . 0 I

�A n �An	1 . . �A2 �A1

B �

I 0 . . 0 0

A1 I . . 0 0

. . . . . .

. . . . . .

An	1 An	2 . . A1 I

	1 B1�A1 B0

B2�A2 B0

.

.

B n�A n B0

C � I 0 . . 0 0

D � B0
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(2.70)

(2.71)

(2.72)

(2.73)

(2.74)

Based on these relations, it is possible to formulate the desired state space realization.

Theorem 2.4 - A State Space Realization of the ARMAV Model - Without Noise
Modelling

A state space realization of the p-variate ARMAV(n,n) model (2.41) is given by

with {A, B, C, D} defined as 

and the state vector x(t ) defined ask



x( tk ) �

ŷ( tk | tk	1 )

ŷ( tk�1 | tk	1 )

.

.

ŷ( tk�n	2 | tk	1 )

ŷ( tk�n	1 | tk	1 )

ŷ( tk�1 | tk ) � ŷ( tk�1 | tk	1 )�h(1)u( tk )
ŷ( tk�2 | tk ) � ŷ( tk�2 | tk	1 )�h(2)u( tk )

.

.

ŷ( tk�n	1 | tk ) � ŷ( tk�n	1 | tk	1 )�h(n�1)u( tk )
ŷ( tk�n | tk ) ��A n ŷ( tk | tk	1 )� ...�A1 ŷ( tk�n	1 | tk	1 )�h(n )u( tk )

x( tk�1 ) � Ax( tk ) � Bu( tk )

B �

h(1)

h(2)

.

.

h(n�1)

h(n )
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(2.75)

(2.76)

(2.77)

(2.78)

This state space realization is called an observability canonical realization. Observability
because the associated observability matrix Q (n) is a unity matrix. The np × np transitiono

matrix A is in its present form also known as the companion matrix for the auto-regressive
matrix polynomial. The np × p input matrix B consists of n impulse response functions. The
p × np observation matrix C ensures that only the system response y(t ) is returned.k

Proof:

Combine (2.69) and (2.66), with increasing prediction horizon, to yield the following set of
equations

This set of equations can compactly be written as

with x(t ) defined by (2.75) and A by (2.71). The input matrix B is in its present form definedk

as



y( tk ) � y( tk | tk	1 ) � B0 u( tk )

� I 0 . . 0 0 x( tk ) � B0 u( tk )

� Cx( tk ) � Du( tk )

x̂( tk�1 | tk ) � Ax̂( tk | tk	1 ) � Ke( tk ) , e( tk ) � NID(0 ,� )

y( tk ) � Cx̂( tk | tk	1) � e( tk )

A �

0 I . . 0 0

0 0 . . 0 0

. . . . . .

. . . . . .

0 0 . . 0 I

�A n �An	1 . . �A2 �A1

K �

I 0 . . 0 0

A1 I . . 0 0

. . . . . .

. . . . . .

An	1 An	2 . . A1 I

	1 C1�A1

C2�A2

.

.

C n�A n
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(2.79)

(2.80)

(2.81)

(2.82)

but by using (2.63), it can be expressed in terms of the coefficient matrices of the ARMAV
model as in (2.72). 

The response y(t ) can be extracted by using (2.67) ask

which defines the observation matrix C and the direct term matrix D. Equation (2.77)
corresponds to the first equation in (2.70), and (2.79) to the second equation. a

In a similar fashion it is possible to convert the ARMAV model (2.52) that accounts
for the presence of disturbance to an observability canonical state space realization.
This is shown in the following theorem which will be given without proof.

Theorem 2.5 - A State Space Realization of the ARMAV Model - With Noise
Modelling

A state space realization of the p-variate ARMAV(n,n) model (2.52) is given by

with {A, K, C} defined as 



C � I 0 . . 0 0

x̂( tk | tk	1) �

ŷ( tk | tk	1 )

ŷ( tk�1 | tk	1 )

.

.

ŷ( tk�n	2 | tk	1 )

ŷ( tk�n	1 | tk	1 )

x̂( tk | tk	1 )
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(2.83)

(2.84)

and the state vector  defined as

a

For univariate ARMA models several canonical state space realization exist, see e.g.
Kailath [48]. However, for multivariate systems, the natural analogs of the univariate
systems do not necessarily yield minimal realizations. This may be a severe
drawback, unless one is able to reduce the realization to a minimal one. However,
since reliable and applicable model reduction techniques exist, see e.g. Hoen [38],
there is no cause for alarm in using the observability canonical state space realization.
This particular representation of ARMAV models has been applied by many authors,
see e.g. Andersen et al. [6], Aoki [11], Hannan et al. [33], Hoen [38], Ljung [71],
Pandit et al. [86] and Prevosto et al. [94]. 

2.6 Summary

In this chapter two different representations of multivariate linear and time-invariant
discrete-time systems, subjected to Gaussian white noise excitation, have been
introduced. The two representations are the stochastic state space representation and
representation by stochastic ARMAV models. These representations provide an
equivalent description of the discrete-time system. It might seem meaningless to
spend time on both representations. However, both representations have advantages.
The manipulation of a state space representation of a system is very simple, since it
only involves manipulations of a few system matrices. On the other hand, the
recursive structure of the ARMAV model might reduce the computational effort in
some applications. This chapter has concerned noise-free systems as well as systems
affected by noise. In both cases, a state space representation and an equivalent
ARMAV model have been derived. In the context of system identification based on
measured data, it is very important to account for the presence of noise. So in this
case, the innovation state space representation or the equivalent ARMAV model that
account for the presence of noise should be used. On the other hand, in case of
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analytical studies of linear and time-invariant systems the noise-free representations
would probably be preferred.


