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4 Equivalent Discrete-Time Structural
Systems

In this chapter, it is analysed how to represent the combined continuous-time system
derived in chapter 3 by discrete-time ARMAV models. In order to obtain such a
discrete-time representation, it is necessary to sample the continuous-time combined
system in some way. The sampled system will as such be a discrete-time equivalent
to the continuous-time combined system. Sampling or discretization of the response
of a stochastically excited continuous-time system can be performed in a number of
ways, and no matter how it is performed information is lost as a consequence of the
discretization. In principle, the difference between the discretization approaches is
the way this loss is accounted for. Thus, any discrete model will only be an
approximation of the continuous-time system and as such also of the true system. 

There are at least four different approaches that can be applied to discretization of a
continuous-time linear time-invariant system. 

� Approximation of differentials by difference equations.
� Approximation of the transfer function by pole-zero mapping techniques.
� Approximation of the transfer function by the zero-order hold-equivalence

technique.
� Approximation of the system response by a covariance equivalence

technique.

The first approach approximates the differential equation of the combined system by
difference equations, using one of the three approximation schemes; the forward
rectangular rule, the backward rectangular rule, or the trapezoidal rule. The first rule
is also known as Euler’s rule, whereas the last sometimes is referred to as Tustin’s
rule. This discretization approach is described in Safak [97]. The second approach
approximates the equivalent discrete-time system by matching the poles and zeroes
of the transfer functions of the two systems, see Åström et al. [114]. In the third
approach, the continuous-time excitation of the system is held constant by assuming
a zero-order hold. The continuous-time system is then subjected to this discrete-time
input and the result is a discrete-time output. The discrete-time transfer function can
then be obtained as the ratio between the discrete-time input and output, see
Middleton et al. [79]. However, all these techniques requires measured input and can
as such not be applied to analysis of ambient excited structures. In the last approach,
which will be adopted here, the equivalent discrete-time system, is approximated by
requiring that the covariance function of the system response for a Gaussian white
noise input coincides at all discrete time lags with that of the continuous-time system.
The reason why this approach is adopted is that ambient excitation is unknown which
makes the system response the only information available about the system.
Assuming that this response is Gaussian distributed a covariance equivalent model
will thus be exact at all discrete time steps and as such be the most accurate
approximation approach.



x( t2 ) � e
F ( t2	t1)x( t1 ) � �

t2

t1

e
F ( t2	- )

Bw(� )d� , w( t ) � NID(0 ,W )

68 Sampling of Continuous-Time Systems
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For univariate second-order systems this approximation technique has been discussed
by several authors, see Bartlett [13], Gersch et al. [27], Kozin et al. [68] and Pandit
et al. [88]. The generalization to multivariate second-order systems has been
considered in Andersen et al. [5]. However, as shown in the previous chapter the
white noise excited combined continuous-time system is only of second order in
special cases. Besides the stochastic excitation that affects the combined continuous-
time system, the system will most certainly also be affected by different forms of
disturbance. This disturbance is e.g. due to the approximation of the true system with
a discrete-time model, or simply measurement noise. The presence of disturbance
must also be accounted for by the equivalent discrete-time model. In this chapter, it
is shown how to obtain a covariance equivalent discrete-time stochastic model to a
multivariate continuous-system of arbitrary order. This covariance equivalence will
be established for a noise-free system. However, it will also be shown how to account
for the presence of noise in the system. The primary objective of this chapter though,
is to serve as a basis for the development guidelines for the selection of an
appropriate discrete-time model structure for use in practical system identification.
Practical guidelines for selection of an appropriate model structure should be able to
answer the following questions

� What kind of model structure should be applied?
� What should the dimensions of this structure when noise is not present?
� What should the dimensions of this structure when noise is present?

The first two questions are answered in the instance when the covariance equivalent
discrete-time model of the noise-free combined continuous-time system is obtained.
The last question can then be answered by applying the techniques developed in
chapter 2. The actual formulation of the practical guidelines is given in section 5.7.
In section 4.1, it is considered how to sample the continuous-time system and how
to interpret covariance equivalence. Based on this knowledge, it is in section 4.2
shown how to obtain a covariance equivalent discrete-time model of the combined
continuous-time system. In section 4.3, it is analysed how to make this model account
for additional disturbance.

4.1 Sampling of the Combined Continuous-Time System 

Assume that the state vector x(t ) of the continuous-time state space system in (3.46)1

is known at some time t . The state vector x(t ) at the time t  can then be determined1 2 2

from the solution, see e.g. Kailath [48]

Let T be a constant sampling interval, and define the times t = kT and t = (k+1)T,1 2 

with k being an arbitrary integer. Inserting these definitions into (4.1) yields



x( (k�1)T ) � e F ((k�1)T	kT )x(kT ) � �
(k�1)T
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(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

The response y(kT) is trivially obtained using the observation equation in (3.46) as

This discretization approach is called direct sampling since it corresponds to
experimental sampling, see e.g. Wahlberg et al. [111]. At each discrete time instance
a snapshot of the system is taken. 

4.1.1 The Sampled Discrete-Time State Space System

Define the discrete time step t  as t  = kT. Further, define the transition matrix ask k

and the input  as

The input is zero-mean and Gaussian distributed, since integration is a linear
operation and w(t) itself is zero-mean and Gaussian distributed. The integrations are
non-overlapping, implying that , for different k, are statistically independent.
The process  is therefore a discrete-time Gaussian white noise and can be
completely described by the covariance matrix �, given by



x( tk�1 ) � Ax( tk ) � w̃( tk ) , w̃( tk ) � NID(0 ,� )

y( tk ) � Cx( tk )

�(� ) � e F-
�(0)

�(� ) � C�(� )C T

F�(0) � �(0)F T
� �BWBT

�(sT ) � As
�(0)

�(sT ) � C�(sT )C T

w̃( tk )
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(4.7)

(4.8)

(4.9)

(4.10)

In (4.6) a variable substitution t = kT-� reveals that � is independent of k and that
 therefore is stationary. Insert (4.4) and (4.5) into (4.2) to yield the discrete-time

state space system

As might be observed, this system resembles the state space representation defined
in (2.1) without a direct term.

4.1.2 Covariance Equivalence

The key issue of discrete-time modelling of a continuous-time system is how to
express the integral in (4.2). This is the major difference between the different
discretization approaches mentioned at the beginning of this chapter. The dynamic
properties of the system are the same no matter how the discretization has been
obtained. This section concerns the covariance equivalence technique. 

Since the input to the linear time-invariant combined continuous-time system (3.46)
is stationary Gaussian white noise, the response will also be stationary and Gaussian
distributed. This implies that the first and second-order moments of the response
provides a complete statistical description of the system response. Without loss of
generality, it will be assumed that the response process has zero-mean. This implies
that the covariance function describes it completely. From theorem A.2, in appendix
A, the covariance function �(�) of the response y(t) of the state space realization
(3.46) is given by

where �(�) is the covariance at time lag � of the state vector x(t). �(0) is obtained as
a positive definite solution of the Lyapunov equation

Let s be an arbitrary integer, and consider only discrete time lags � = sT. It then
follows that (4.8) can be expressed in terms of the transition matrix as



�(s ) � �(sT )

x( tk�1 )xT( tk	s ) � Ax( tk )xT( tk	s ) � w̃( tk )xT( tk	s )

�( (s�1)T ) � A�(sT )
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(4.11)

(4.12)

(4.13)

Define the covariance function of the discrete-time response y(t ) as �(s). If thisk

covariance function can be expressed explicitly in terms of the continuous-time
covariance function at all discrete time lags, i.e. 

then the system response of the continuous-time and discrete-time systems is
covariance equivalent for all discrete time steps. This is illustrated in figure 4.1.

Figure 4.1: Covariance equivalence. �(t) is the continuous-time covariance function
and �(s) is the discrete-time covariance function. These are related
through the sampling interval T.

In the context of system identification, it should be noticed that due to the Wiener-
Khinchine relation, see e.g. Bendat et al. [14], an estimated covariance equivalent
discrete-time model provides an unbiased estimate of the spectral densities of the true
system. The question is whether (4.7) is a covariance equivalent discrete-time
representation of the combined continuous-time system (3.46) or not, i.e. is the
relation (4.11) fulfilled or not?  To answer this, multiply (4.7) from the right with
x (t ) to yieldT

k-s

Taking the expectation on both sides results in the following covariance relation

where the relation between the continuous and discrete time-instances has been
stressed out. This equation can be solved by recursive substitutions of itself to yield



�(sT ) � As
�(0)

�(s ) � E y(tk )yT(tk	s )

� CE x(tk )xT(tk	s ) CT

� C�(sT )CT

y( tk ) � A1 y( tk	1 ) � A2 y( tk	2 ) � ... � A n y( tk	n ) � z( tk )

An An	1 . . A2 A1 � �CA n Q	1
o (n )

n� m

p

w̃( tk )
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(4.14)

(4.15)

(4.16)

(4.17)

where �(0) is the zero-lag covariance obtained from (4.9). The covariance of the
output y(t ) is trivially obtained from k

If (4.14) and (4.15) are compared with (4.10), it is seen that (4.11) is fulfilled and that
(4.7) is a covariance equivalent discrete-time representation of (3.46).

4.2 Equivalent ARMAV Models - Without Noise Modelling 

The objective of this section is to obtain a covariance equivalent ARMAV model of
the noise-free combined continuous-time system (3.46) of the type presented in
section 2.3. Assume that the dimension of the state matrix F is m × m, and that the
number of observed outputs is p. Since the dimensions of A and F are the same, this
relation implies that the nth order continuous-time differential system is equivalent
to an nth order difference equation system

with  and z(t ) being a fixed particular solution, see section 2.3. Since the orderk

of the homogenous part of this discrete-time system is n, and since the observation
matrix C remains unchanged during sampling, the p × p coefficient matrices A  ofi

this difference equation is obtained directly from (2.42) and (4.4) as

with Q (n) being the observability matrix constructed from {A, C}. o

Since the sampled combined continuous-time system (4.7) is driven by white noise 
it is possible to represent it by a discrete-time ARMAV model, according to theorem
2.2. This implies that the vector function z(t ) is a moving average matrix polynomial.k

The purpose of this moving average is to secure that the output y(t ) is stationary. Thek

problem that remains to be solved is therefore the determination of the moving
average, i.e. parameterize the function z(t ) in such a way that (4.11) is satisfied. Thisk

parameterization is determined by the following theorem.



y( tk ) � A1 y( tk	1 ) � A2 y( tk	2 ) � ... � A n y( tk	n ) �

B1u( tk	1 ) � B2u( tk	2 ) � ... � Bn u( tk	n )

u( tk ) � NID(0 ,� )

y( tk�p ) � CAp x( tk ) � �
p

j
1
CAp	j w̃( tk�j	1 )

w̃( tk ) � NID(0 ,� )

y( tk	n )

y( tk	n�1 )

.

.

y( tk	1 )

y( tk )

�

C

CA

.

.

CAn	1

CA n

x( tk	n ) �

0 0 . . 0 0

C 0 . . 0 0

. . . . . .

. . . . . .

CAn	2 CAn	3 . . 0 0

CAn	1 CAn	2 . . C 0

w̃( tk	n )
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.

.

w̃( tk	1 )
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(4.18)

(4.19)

(4.20)

Theorem 4.1 - An Equivalent ARMAV(n,n-1) Model - Without Noise Modelling

The covariance equivalent discrete-time model to a directly sampled nth order p-variate
continuous-time system, given by (3.46), can be represented by an ARMAV(n,n-1) model
defined as

Proof:

Consider the sampled solution (4.7) of (3.46). Since the auto-regressive coefficient matrices
A , A , ... , A  have been obtained from A by means of C, it follows that (2.40) is satisfied. This1 2 n

fact is used in the following. Observe from (4.2) and (4.7) that y(t ) can be written ask+p

by making recursive substitutions of (4.7) itself. From the observation equation of (4.7) and
(4.19), construct the following set of equations

which can compactly be written as



Y( tk	n , tk ) � Qo(n�1)x( tk ) � T(n�1)W̃( tk	n , tk )

P � An An	1 . . A1 I

PY( tk	n , tk ) � PQo(n�1)x( tk ) � PT(n�1)W̃( tk	n , tk )

� PT(n�1)W̃( tk	n , tk )

� B̃1w̃( tk	1 ) � B̃2w̃( tk	2 ) � ... � B̃nw̃( tk	n )

� z( tk )

B̃j � CAj	1
� A1 CAj	2

� ... � Aj	1 C , 0< j�n

z ( tk ) � B1u( tk	1 ) � B2u( tk	2 ) � ... � Bnu( tk	n )

E z( tk )zT( tk�j ) �

B̃1� B̃T
1 � ... � B̃n� B̃T

n , j�0

B̃1� B̃j�1 � ... � B̃n	j� B̃T
n , 0< j<n

0 , j�n

w̃( tk ) B̃j
w̃( tk )

B̃0 w̃( tk )

w̃( tk )

z(tk)

u(tk)
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(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

Now introduce the result of (4.17), which is a matrix containing the auto-regressive coefficient
matrices,

and multiply (4.21) from the left by (4.22) to yield

The left hand-side of (4.23) is exactly the auto-regressive part of (4.18), and the right-hand
term z(t ) is a matrix polynomial in  with  being p × m coefficient matrices. Since thek

process  is a discrete-time Gaussian white noise z(t ) is certainly a moving average. Also,k

since the first p rows and the last m columns of T(n+1) are all zero, the moving average
coefficient matrix  associated with  is zero. The reason is that the sampled state space
system (4.7) does not have a direct term in the observation equation. This implies that the
moving average matrix polynomial in reality is only of the order n-1, and that the complete
ARMAV(n,n-1) model is given by (4.18). However, the dimension of  is different from
the dimension of y(t ). This implies that (4.22) at the present moment does not have thek

standard form of the multivariate ARMAV model of theorem 2.2. It should be noticed though,
that the continuous-time white noise w(t) and z(t ) both are p-variate vectors. This suggests thatk

the moving average can be represented by a matrix polynomial of the following kind

where B  are p × p coefficient matrices, and  is an p-variate discrete-time zero-meani

stationary Gaussian white noise process. This process is fully described by its p × p covariance
matrix ��. Since z(t ) is a Gaussian distributed process with zero mean the only requirement fork

(4.24) to be statistically equivalent to (4.23) is that the covariance function of z(t ) is the samek

in both cases. From (4.23) the covariance function is given by



E z( tk )zT( tk�j ) �

B1�BT
1 � ... � Bn�BT

n , j�0

B1�Bj�1 � ... � Bn	j�BT
n , 0< j<n

0 , j�n

B1�Bj�1� ...�Bn	j�BT
n � B̃1� B̃j�1� ...� B̃n	j� B̃T

n � Cj

x( tk�1 ) � Ax( tk ) � Bu( tk ) , u( tk ) � NID(0 ,� )

y( tk ) � Cx( tk )

Equivalent Discrete-Time Structural Systems 75

(4.26)

(4.27)

(4.28)

This covariance function can be represented in a similar way in terms of (4.24) to yield

In both cases there are one auto-covariance term and n-1 non-trivial cross-covariance terms
that must be fulfilled. Of course similar expressions of the cross-covariances in (4.25) and
(4.26) for j < 0 will also exist. However, in the present context such expressions are immaterial
since they will not provide any additional information. Equating (4.26) and (4.25), the
following n equations are obtained

where C , for j = 0 to n-1, are known p × p matrices. j

The total number of unknown matrices in this equation system is n+1, since there are n
unknown coefficient matrices B  and one unknown covariance matrix ��. All unknown matricesj

are of the dimension p × p. On the other hand, only the n matrices C  are known, which impliesj

that there are too many unknowns. This problem can, however, be eliminated by selecting the
elements of one of the unknown matrices. A sensible choice could be to select the elements
of the first coefficient matrix as B  = I. The result is then n p-variate equations and n p-variate1

unknowns. This implies that it must be possible to determine a set of coefficient matrices B ,j
for j = 2 to n, and a covariance matrix ��, that satisfies (4.27). There will certainly be many
solutions, due to the dimension p of the n unknown matrices in (4.27), and the actual number
of solutions depends both on p and n. This also explains why it is impossible to determine a
unique moving average of the standard ARMAV model in the context of system identification.

a

As seen a theoretical relation between the combined continuous-time system and the
discrete-time covariance equivalent ARMAV model exist. This ARMAV(n,n-1)
model can be represented by the following state space system

since it is the lack of a direct term in the observation equation that reduces the
moving average order. The actual state space realization of the ARMAV(n,n-1) could
e.g. be of the observability canonical form shown in theorem 2.4. It is difficult in the
general case to calculate the moving average coefficients explicitly. However, in
system identification this is unimportant. However, there might be applications, such
as simulation, where it would be desirable to have an analytical relationship between
the continuous-time system and a covariance equivalent ARMAV model. Such a
relationship can be established if the combined continuous-time system (3.46) is of
the second order. This will be considered in the following special case.



z̈( t ) � M	1C �z( t ) � M	1Kz( t ) � M	1 w( t ) , w( t ) � NID(0 ,W )

Cz,0 � M	1K , Cz,1 � M	1C , Cw,0 � M	1

F �

0 I

�M	1K �M	1C
, B �

0

M	1
, C � I 0

y( tk ) � A1 y( tk	1 ) � A2 y( tk	2 ) �

u( tk	1 ) � B2 u( tk	2 ) , u( tk ) � NID(0 ,� )

A2 A1 � �CA2
C

CA

	1
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(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

4.2.1 A Special Case: An ARMAV(2,1) Model

Theorem 4.1 does not provide any explicit scheme for the determination of the
moving average coefficient matrices and the corresponding covariance matrix of the
Gaussian white noise input. This section describes how a covariance equivalent
ARMAV(2,1) model can be determined explicitly. The continuous-time second-order
system was introduced in (3.1) in section 3.1.1 as

Here w(t) is a zero-mean continuous-time Gaussian white noise, completely described
by the intensity matrix W. This system is obtained from (3.39), for n = 2, by the
following definition of the coefficient matrices {C , C , C }z,0 z,1 w,0

Assume that the outputs of the system are the displacements of all mass points in the
model. In this case {F, B, C} of the state space realization (3.46) are given by

By choosing a sampling interval T the transition matrix A can be calculated from
(4.4). From the following theorem, it is then possible to calculate the covariance
equivalent ARMAV(2,1) model explicitly.

Theorem 4.2 - A Covariance Equivalent ARMAV(2,1) Model.

Consider the Gaussian white noise excited second-order combined continuous-time system
(4.31). A covariance equivalent ARMAV(2,1) model to this system is defined as

Based on the transition matrix A, given in (4.4), and the sampling interval T, the auto-
regressive coefficient matrices are calculated by

The moving average coefficient matrix is obtained from the solution of the second order matrix
polynomial



B2
2 � B2 K0 � K1 A T

1 K	T
1 � K1 K	T

1 � 0

K0 � �(0) � A1�
T(T ) � A2�

T(2T )

K1 � �(T ) � A1�(0) � A2�
T(T )

� � B	1
2 K1

y( tk ) � A1 y( tk	1 ) � A2 y( tk	2 ) �

B1 u( tk	1 ) � B2 u( tk	2 ) , u( tk ) � NID(0 ,� )

�(k ) � A1�(k�1) � A2�(k�2) �

�h T(1�k ) � B2�hT(2�k )

�(kT ) � A1�( (k�1)T ) � A2�( (k�2)T ) �

�h T(1�k ) � B2�hT(2�k )

2p

p

A1 A2
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(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

with K  and K  defined as0 1



(0), 

(T) and 

(2T) are obtained from (4.8). The solution of (4.34) is given in appendix B,
and the covariance matrix �� of the discrete-time Gaussian white noise u(t ) is obtained fromk

Since (4.34) is a matrix polynomial, whose coefficient matrices are of the dimension p × p,
and since the solution matrix B  also has the dimension p × p, the number of independent2

solutions is . In the univariate case this number is two.

Proof: 

Since the continuous-time system is of the second order, the auto-regressive order will also be
two. Assuming that the continuous-time state space system is minimal, the two auto-regressive
coefficient matrices and  are calculated directly from (4.17) by choosing the sampling
interval T. Following theorem 4.1, covariance equivalence with a continuous-time second-
order system can be obtained by the following ARMAV model

with B  = I. Consider the following implicit formulation of the discrete-time covariance1

function of an ARMAV(2,1) model, see e.g. Pandit et al. [88]

and insert 

(kT) of the continuous-time system instead of (((k), to yield

For simplicity introduce the following two p × p matrices 



K0 � �(0) � A1�
T(T) � A2�

T(2T)

K1 � �(T) � A1�(0) � A2�
T(T)

h(0) � 0

h(1) � A1 h(0) � I � h(1) � I

h(2) � A1 h(1) � A2 h(0) � B2 � h(2) � B2 � A1

K0 � � � B2� B2� A1
T

K1 � B2�

K0 � B	1
2 K1 � K1 B2 � A1

T

A �

0 I

�A2 �A1

, B �

I

B2�A1

, C � I 0
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(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

which are equal to the left-hand side of (4.39) by setting k equal to 0 and 1. Notice that

which implies that (4.39) can be written as

By replacing �� with B K , obtained from the second equation of (4.42), in the first equation2 1
-1

of (4.42), the following relation is obtained

from which B  can be calculated. By rearrangement, the second-order matrix polynomial in2

(4.34) is obtained. The solution of this polynomial is given in appendix B. Based on B  the2

covariance matrix �� is determined from (4.42) or equivalently from (4.36). This approach,
which is especially designed for ARMAV(2,1) models, is based on Andersen et al [5].  a

The covariance equivalent ARMAV(2,1) model can equivalently be represented by
a state space realization with the state matrix A, the input matrix B, and the
observation matrix C defined as

This definition follows directly from theorem 2.4. Notice, that since the state vector
of the continuous-time system only includes the displacement and the velocity, it is
only possible to construct a covariance equivalent discrete-time model that includes
a linear combination of these. 
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(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

4.2.2 Example 4.1: An ARMA(2,1) Model

By using the procedure described in the previous section, it is possible to obtain a covariance
equivalent ARMA(2,1) model of the univariate second-order white noise excited structural
system in example 3.1, section 3.3.2. The white noise excited continuous-time system is
defined as, see (3.51)

With the matrix triple {F, B, C} given by

Assume that the eigenvalues {� , � } of F are distinct and stable, then the discrete-time1 2

eigenvalues {µ , µ } are defined by the relation µ = e . Since the eigenvectors of F, defined1 2
�T

as

diagonalize F, see section 3.4.4, they will also diagonalize e , implying thatFT

From {A, C} the observability matrix and its inverse are given by
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(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

and the row vector CA  by2

implying that the two auto-regressive coefficients A  and A  are obtained from (4.17) as1 2

The moving average parameter B  is determined from theorem 4.2. Calculate the covariances1


(0), 
(T) and 
(2T). These can be obtained from (4.8) in section 4.1.2. However, in the
univariate case it is more straightforward to use the following relation, see Pandit et al. [88]

where W is the intensity of the univariate continuous-time Gaussian white noise w(t). Based
on the variances and the auto-regressive parameters the constants K  and K  in (4.40) in section0 1

4.2.1 are calculated as

and B  can then be determined as one of the solutions of the second-order polynomial 2

with C defined as

to yield



B1 � 0.5C ± 0.25C 2
�1

� �

W �1��2� µ1�µ2 �2 µ1��1 µ2 �µ1 µ2 �2 µ2
1��1 µ2

2

2B1�1�2 �
2
1��

2
2

x( tk�1 ) � Ax( tk ) � Bu( tk ) , u( tk ) � NID(0 ,� )

y( tk ) � Cx( tk )

x( tk�1 ) � Ax( tk ) � Bu( tk ) � w( tk )

y( tk ) � Cx( tk ) � v( tk )
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(4.56)

(4.57)

(4.58)

(4.59)

The corresponding variances � of the discrete-time Gaussian white noise process u(t ) is thenk

given by

a

4.3 Equivalent ARMAV Models - With Noise Modelling

The purpose of this section is to investigate what happens when sampled response is
affected by measurement noise, and when the combined mathematical model of the
structural system and the excitation do not fully match what is experienced in real-life
structures exposed to ambient excitation. This inaccuracy will in the following be
characterized as process noise. In the previous section the covariance equivalent
ARMAV(n,n-1) model was derived, and it was shown in (4.28) that it could be
represented in state space as

The actual state space realization could e.g. be of the observability canonical form
shown in theorem 2.4. In general, if noise is present, both state and observation
equation will be affected as shown in section 2.2.1. Following (2.15), the presence
of noise in the observations and in the system, changes (4.58) to

where w(t ) is the process noise that incorporates the system inaccuracies into thek

state of the system. v(t ) is the measurement noise that describes the inaccuracyk

between the response of the modelled system and the measured system response y(t ).k

The noise processes w(t ) and v(t ) are both assumed to be zero-mean Gaussian whitek k

noise, completely described by their covariance matrices Q, R, and S, see section
2.2.1. The question is: 

� Does the presence of noise affect the external description of the discrete-
time system? 

The answer is in general yes. The presence of noise will extend the moving average
part. 
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(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

In section 2.2, it was shown how to predict the system response of a noise-contami-
nated stochastic state space system. This prediction could be obtained using the
steady-state Kalman filter. On the basis of the Kalman filter the innovation state
space system was formulated as

where the innovation process e(t ) is an equivalent Gaussian white noise process, thatk

incorporates the actual stochastic excitation and the disturbance. The structure of the
innovation state space system is seen to include a direct term of the innovations in the
observation equation. The lack of this term was the reason why the order of the
moving average of the covariance equivalent ARMAV model was n-1. Now, in the
general case where the direct term is present it follows from theorem 2.3 that the
ARMAV model which corresponds to (4.60) will have the form

According to theorem 2.3 the moving average coefficient matrices is obtained from
(2.54) as

with T(n+1) defined as 

Due to the special structure of this matrix, it will always be positive definite. This
implies that the moving average order only in special cases will be n-1. In these
special cases the following relation must be fulfilled
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(4.65)

(4.66)

(4.67)

since this is the only way the order of the moving average polynomial obtained from
the innovation state space system can be reduced to n-1. According to theorem 2.1,
the steady-state Kalman gain and the innovation covariance matrix of (4.60) are given
by

Inserting these definitions into (4.64) yields

By using the (2.39) this relation reduces to 

If the process noise is limited then the covariance matrices Q and S tend to zero. In
this case C  is equal to A R� . On the other hand, if the measurement noise is limitedn n

-1

the covariance matrices R and S tend to zero, and in this case C  is zero. Then

reduction of the moving average due to the lack of measurement noise only applied
to the moving average coefficient matrix C . In other words, it is not possible ton

eliminate other coefficient matrices C , for i < n. The reason is that the relation (2.39),i

which was used to eliminate the first part of (4.66), cannot be used in other cases. 

So in conclusion:

� The presence of measurement noise will in general increase the moving
average polynomial order of an nth order system from n-1 to n.

The important point here is if the response of an nth order linear and time-invariant
system excited by a stationary stochastic excitation is sampled and if the samples are
of high quality, implying a high signal-to-noise ratio, then the appropriate discrete-
time model is likely to be an ARMAV(n,n-1) model. However, if the signal-to-noise
ratio is low the appropriate model is more likely to be an ARMAV(n,n). In the
following special case the above results are shown for an ARMAV(2,2) model using
a different approach.
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(4.68)

(4.69)

(4.70)

(4.71)

(4.72)

4.3.1 A Special Case: An Equivalent ARMAV(2,2) Model 

In section 4.2.1, the discrete-time covariance equivalent ARMAV(2,1) model of a
second-order combined continuous-time system was derived. This section shows how
this model appear, when it is subjected to process and measurement noise. Consider
the state space realization (4.44) of the covariance equivalent ARMAV(2,1) model,
defined by the system matrices

The auto-regressive part will not be affected by the disturbance. The auto-regressive
coefficient matrices A  and A  are therefore still determined by (4.33). According to1 2

theorem 2.5, the moving average matrices C  and C  can for this particular state space1 2

realization be defined in terms of the Kalman gain defined in (4.65) as

If the covariances P and S are partitioned as

it is possible to express (4.69) as

The matrices C  and C  are then given by the following two equations1 2

If the measurement noise is insignificant, then R and S tend to zero. In this case, it
follows from (4.65) that the innovation covariance � reduces to CPC = P , whichT 

11

implies that C  = 0. Thus in situations, where the measurement noise is insignificant,2

the appropriate model will be an ARMAV(2,1) model no matter how much process
noise being present.



x( tk�1 ) � Ax( tk ) � Bu( tk ) , u( tk ) � NID(0 ,� )

y( tk ) � Cx( tk ) � v( tk )

A �

0 1

�A2 �A1

, B �

1

B2�A1

, C � 1 0

P � APAT
� B�BT

� APCT CPCT
� R 	1 CPAT

��CPCT
� R , C1�A1 �

NPCT

�
, C2�A2 1 �

CPCT

�

Equivalent Discrete-Time Structural Systems 85

(4.73)

(4.74)

(4.75)

(4.76)

4.3.2 Example 4.2: An ARMA(2,2) Model

In section 4.2.2 the noise-free covariance equivalent ARMA(2,1) model was derived on the
basis of the second-order continuous-time system. Now assume that a zero-mean Gaussian
distributed measurement noise v(t ) is present. This white noise is fully described by thek

variance R. A state space realization of the ARMA(2,1) model that includes this noise term is
given by, see (4.59)

with {A, B, C} defined as

and u(t ) being a zero-mean Gaussian white noise, fully described by the variance �. Thek

steady-state covariance matrix P of the state prediction error is obtained as a positive definite
solution of the algebraic Riccati equation

where P is the only unknown. Different techniques exist for solving this special equation, see
e.g. Aoki [11]. On the basis of P the variance � of the innovations e(t ), and the movingk

average parameters C  and C , are given by1 2

with N = [ 0  1 ]. By comparing the first and last equations in (4.76), it is easy to see that if no
measurement noise is present, i.e. R = 0, then C  is zero. a2

4.4 Summary

This chapter has considered what happens when the combined continuous-time
system is sampled. The discretization can be performed in a number of ways.
However, in the context of ambient excited structures where only the system response
is available, an appropriate model can be obtained by the covariance equivalence
technique. This technique requires, that the first- and second-order moments of the
response of the combined continuous-time system must be equal to the first- and
second-order moments of the response of the discretized model at all discrete time
instances. In the noise-free case, the discretized model of an nth order combined
continuous-time system is an ARMAV(n,n-1) model. If measurement noise is
present, then it is shown that the appropriate model changes to an ARMAV(n,n)
model.
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