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7 Computational Aspects and Numerical
Implementation

This chapter concerns the computational aspects of system identification using
discrete-time parametric models. In chapter 4, the ARMAV model of a structural
system was derived. The estimation of the ARMAV model and the equivalent
innovation state space system was the subject of chapter 5. Some of the applications
of system identification using these models were given in chapter 6. However, the
actual implementation as well as the practical problems encountered in this context
have not yet been discussed. These subjects are put in focus in this chapter. Section
7.1 concerns some of the aspects that must be taken into account in order to improve
the accuracy in the numerical manipulation of multivariate discrete-time systems.
Section 7.2 describes what a good system identification software must include. It also
describes what to require from the programming environment and why the actual
implementation in this thesis has been performed in the MATLAB programming
language. Finally, in section 7.3 the actual numerical implementation of the theory
presented in this thesis is considered. 

7.1 Improving Computational Accuracy of Numerical Algorithms

In chapter 5, numerical algorithms for identification of multivariate linear systems
were considered. However, it is necessary to account for the finite length numerical
arithmetic and possible errors in the data. This section will describe some of the
typical problems encountered in practical system identification, and give guidelines
as to how they can accounted for.

7.1.1 Prefiltering, Resampling and Detrending of the Data

The discrete-time stochastic models presented in this thesis assume that the
measurements are realizations of a zero-mean stochastic process. This means that
response measurements having a DC component and components of slow harmonic
excitation will cause trouble in the interpretation of identification results. It may
therefore be beneficial to prefilter the data prior to the actual system identification.
A high-pass filter can effectively remove any constant DC component, and harmonic
components such as 50 Hz noise can be removed by either lowpass or bandpass
filtering. The same filters should be applied to all measurement channels in order to
avoid introduction of different phase distortion of the channels. If the filters only are
applied to some of the channels a two-ways filtering approach should used. It is also
important to eliminate the possibility of aliasing either by applying an appropriate
analog anti-aliasing filter or by rapid sampling. For most identification procedures
though, it is important that the sampling interval is optimal with respect to the content
of the dynamical amplified response. 
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If the sampled response has no significant energy content above a frequency that is
an integer factor of the Nyquist frequency the sampled response should be decimated.
In other words, it should be resampled with a higher sampling interval. If the
sampling interval is too small, the estimates of low-frequency modal parameters will
be poor. How to select the optimal sampling interval for identification of ARMA
models has been investigated in Kirkegaard [53]. Finally, it might also occur that the
DC component is time-varying for some reasons. The measured data will then have
a drifting trend. This trend might e.g. be linear or harmonic but in any case, it should
be removed prior to the identification of time-invariant linear models. The removal
of trends from the measured data is called detrending.

7.1.2 Scaling of the Measured Data

The dynamic response of a structure may be measured in several ways. For system
identification purposes structural response is often measured as accelerations.
However, displacements, velocities, material strain and stress, and pore pressure may
also be used. In any case, to get as reliable information as possible from the
measurements, the measurement range of the sensors is typically scaled according to
the level of the response at the sensor location. For most sensors, a calibration of the
sensor signal must be performed to get correct physical units. This calibration is often
carried out as a part of the data acquisition procedure. Because of the different
physical units that might occur in a set of measurements, and because the response
level may deviate considerably from one sensor position to another, it is reasonable
to expect that the standard deviation of the measured records may be significantly
different from one another. Such measurements will most certainly result in a large
range of the system matrices of the identified model. A large range implies that there
is a large difference between the values of the elements of these matrices. This would
not be a problem if infinite precision arithmetic was used. However, this is not the
case in practice and the result is ill-conditioned system matrices. Such system
matrices will e.g. result in an ill-conditioned modal decomposition and therefore
modal parameter estimates. 

These reasons motivate the application of a scaling procedure to the measured records
prior to the actual system identification. Let y(t ) be the measured zero-meank

response. The scaled measurements y (t ) are then given bys k

where S is a scaling matrix. If a system identification of a stochastic state space
realization is based on y (t ) a correct scaling of the response and of the mode shapess k

is obtained by using the following observation equation

If a system identification of an ARMAV model is based on y (t ) a correct scaling iss k

obtained by the extension



y( tk ) ' S&1A&1(q )C(q )e( tk )

VN (22 ) ' det
1
Nj

N

k'1
g gg ( tk ,22 ) g gg( tk ,22 ) T

Computational Aspects and Numerical Implementation 133

(3)

(4)

A natural choice of scaling matrix is a diagonal matrix where the diagonal elements
are the sampled standard deviations of the measurements. In this way all channels
will have unit standard deviation and be non-dimensional.

7.1.3 Reducing the Range of the System Matrices

In the previous chapters, it has been shown how the ARMAV model can be realized
in state space by the observability canonical state space form, see e.g. (2.62) and
(2.63). This particular realization has been emphasized since it is easy to obtain
directly from the ARMAV model. However, for numerical computations this
realization should be avoided since it typically has an ill-conditioned modal
decomposition. The reason is that the transition matrix is in companion form which
implies that its range is large. Due to the finite precision arithmetic the eigenvalues
and eigenvectors of the companion matrix will be highly sensitive to perturbations
and therefore sensitive to noise. 

The condition of the companion matrix should therefore be improved before e.g. a
modal decomposition is applied. The condition can be improved by balancing of the
companion matrix. When a matrix is ill-conditioned there is a large difference
between the singular values of the matrix. Such a matrix is balanced by use of a
proper similarity transformation. The effect of this transformation is to reduce the
difference between the singular values of the matrix, and in principle make all
singular values equal. This similarity transformation has to be applied to all system
matrices according to the transformation rules given in definition 2.2. Since the
balancing affects all system matrices of the realization, the obtained system is
referred to as a balanced state space realization. Various techniques for balancing of
state space realizations exist, see e.g. Aoki [11], Hoen [38] and McKelvey [76]. 

7.1.4 Robustifying the Prediction Filter

This section addresses two practical problems which can be encountered with the use
of the prediction filter L(q,22) of the PEM method reviewed in chapter 5. Suppose that
prediction errors with a very small probability of occurrence can assume certain large
values. Measured data that create such prediction errors are called outliers and these
can seriously affect the variance of the prediction errors. It is obvious that such an
influence is not acceptable. The solution is a robustification of the criterion function
defined in section 5.2
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The function g(gg(t ,22)) should behave as gg(t ,22) for small values of gg(t ,22), and thenk k k

saturate as gg(t ,22) increases. It can be shown, see Ljung [71], that choosing g(gg(t ,22))k k

as

reduces the variance of the prediction errors efficiently. D is a scalar in the range 1 #
D # 1.8, and FF  is a vector of estimated standard deviations of the prediction errors.

gg

The vector FF  is calculated robustly, i.e. in a way that is highly insensitive to the
gg

presence of outliers as

The loss of optimality due to this robustification is insignificant in the case of a
Gaussian distributed probability density function of the true system, see Ljung [71].

So far, it has been assumed that the prediction errors obtained as the output of a
prediction filter subjected to a stationary data sequence {y(t )} is also a stationaryk

sequence. However, using standard formulas for predicting the output from an
ARMAV model, the prediction errors are in general not white before a transient
phase has passed. During this transient phase the effects of the choice of initial
conditions will dissipate. This is true even when the correct model and parameters are
used. Thus, in cases where the amount of data is limited this transient behaviour
might influence the performance of the criterion function significantly. When
applying the prediction filter L(q,22) of the ARMAV(na,nc), na $ nc, for prediction
of the response at time step k, measured data are in principle needed for time step k-1
back to infinite past. However, since data is not available back to infinite past an
initialization procedure has to be chosen. 

Defining the time of the first measurement as 1, the predictor of the ARMAV(na,nc)
model obtained in (5.12) can be calculated for t  $ t , t  = na+1, ask s s

when it is initialized by the following sequences
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The usual procedure, recommended in e.g. Ljung [71], for initialization of the
unknown prediction error sequence in (7.8) is to use the unconditional mean of the
innovations, i.e. zero

This initialization procedure is called the direct start, see Knudsen [64]. Since the
transient behaviour is related to the moving average, all types of model structure
having a moving average might experience bad transient behaviour due to improper
initialization. The transient behaviour of 20 prediction error sequences of a 2-channel
ARMAV(2,2) model is shown in the left-hand side plots in figure 7.1. On the right-
hand side, the variations standard deviation of the 20 prediction error sequences of
the two channels are shown. 

Figure 7.1: Transient behaviour of the prediction errors of an ARMAV(2,2). The
left-hand side plots show 20 different prediction error sequences, and the
right-hand side plots the variation of the standard deviation of these.

From figure 7.1, it seems obvious that if the amount of data is limited this kind of
transient behaviour will seriously affect the criterion function and therefore destroy
the statistical properties of the estimator. In Knudsen [65], it is analysed how the
variance of the prediction errors of a univariate ARMAX model depends on the
amount of data, and how close the eigenvalues of the moving average polynomial
C(q) are to the unit circle. It is concluded that the transient behaviour depends both
on the order of C(q) and how close the eigenvalues of C(q) are to the unit circle.
These conclusions can directly be extended to multivariate ARMAV models. Based
on an approach for reduction of the transient behaviour in the case of ARMAX
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models, see Knudsen [64], a similar approach has been developed for univariate
ARMA models in Andersen et al. [4]. In both these cases the approach is referred to
as the backward forecasting initialization method. The method used in Andersen et
al. [4] can directly be generalized to multivariate ARMAV models. The idea behind
the method is simple; since the predictor in (7.7) is obtained as the conditional mean
given all previous measurements, the zeroes used in the direct start initialization in
(7.9) can be interpreted as the unconditional expectation for the corresponding noise
samples. To remove the bad transient behaviour the predictor should instead be
initialized by a conditional expectation. This conditional expectation is in fact a
multi-step prediction of past unknown prediction errors given all available future
data, see Andersen et al. [4]. It must be emphasized that the problems described in
this section are no argument against the validity of the asymptotic properties of the
PEM methods. It is only in case of a small number of data point that the transient
behaviour has any influence. Clearly, as the number of data points tends to infinity
the effects of the transient behaviour vanishes. The idea of initialization of the
prediction filter is not restricted to the PEM methods. When using e.g. maximum
likelihood estimation similar problems with bad transient behaviour occur. The
elimination of these problems has been investigated in e.g. Box et al. [16] and Saric
et al. [98].

7.2 Using MATLAB as Foundation for Identification Software

The system identification process is truly an iterative process, which can be
characterized as a search for the optimal model among several candidate models. This
implies that several models are identified and rejected before the optimal one is
determined. Such a process can of course not be fully automated, which is why
system identification in practice is best performed in an interactive environment,
where human decisions are mixed with numerical calculations. An efficient system
identification session requires good software as a basis. Such software must fulfil the
users needs as best possible. In case of system identification of ambient excited civil
engineering structures this means that the software as a basis must include:

L Data handling, plotting, filtering, detrending, decimation, resampling.
L Non-parametric identification methods, such as FFT-based spectral

density estimation.
L Parametric identification methods for various multivariate stochastic

model structures.
L Presentation of model properties by e.g. plotting of spectral densities.
L Model validation procedures.

The reason for performing system identification can be caused by different needs.
One of the main reasons for performing it on ambient excited civil engineering
structures is for modal analysis, as explained in chapter 6. Therefore, in addition the
software must include some specialized features, such as:
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L Calculation of the modal parameters and estimation of their associated
uncertainties.

L Procedures for identification of structural modes using e.g. various
stability diagrams.

L Animation of the mode shapes of the structure.

System identification software is as such more a toolbox consisting of different
routines than a single program. Common to these routines is the requirement for
some basic graphical and numerical features e.g. for manipulation of matrices,
filtering etc. If the routines are implemented in a low-level programming language,
these features must also be implemented. However, in this Ph.D. project the software
implementation has been performed in the MATLAB  language (MathWorks Inc.).TM

This language is an interactive type of software. It is a high-performance numerical,
computational and visualization software. 

MATLAB integrates numerical analysis, matrix computation, signal processing, and
graphics in an easy-to-use environment, where problems and solutions are expressed
just as they are written mathematically. These features are exactly what is needed as
foundation for efficient implementation of system identification software, and it is
all accomplished without doing a single line of low-level programming. The name
MATLAB stands for MATrix LABoratory, and it was originally written to provide
easy access to the matrix software developed by the LINPACK and EISPACK
projects, see Dongarra et al. [22] and Smith et al. [103]. Together these projects
represent the state of the art in software for matrix computation. MATLAB is an
interactive system whose basic data element is a matrix that does not require
dimensioning, and the system uses complex arithmetic whenever it is necessary.
MATLAB has evolved over a period of years with input from the users. In university
environments, it has become the standard instructional tool for introductory courses
in applied linear algebra, as well as advanced courses in other areas. In industrial
settings, MATLAB is used for research and to solve practical engineering and
mathematical problems. Typical uses include; general purpose numerical computa-
tion, algorithm prototyping, and special purpose problem solved with matrix
formulations. MATLAB also features a family of application-specific solutions called
toolboxes, which are very important to most users of MATLAB. A toolbox is a
comprehensive collection of MATLAB functions (also known as m-files) that extend
the MATLAB environment in order to solve a particular class of problems. Areas in
which toolboxes are available include; signal processing, control systems design,
dynamic systems simulation, system identification, and neural network.

For system identification several toolboxes exist. The System Identification Toolbox,
see Ljung [72] features a flexible Graphical User Interface (GUI) as well as
identification functions that implement both parametric and non-parametric
identification techniques. The toolbox contains carefully implemented algorithms to
ensure efficiency and reliable numerical results. All data sets and models created with
the GUI are represented by icons. An entire session of data and models, along with
relevant diaries, can be saved for reloading at a later time. The Frequency Domain
System Identification Toolbox, see Kollár [66] and Kollár et al. [67], contains tools
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for accurate modelling of linear systems with or without time-delay. The models are
represented by transfer functions in the z-domain or s-domain. The procedures
includes input design, data preprocessing, parameter estimation, graphical presenta-
tion of results, and model validation. 

The two mentioned toolboxes are the official ones distributed by MathWorks Inc.
Unofficially other system identification toolboxes exist and some of these will be
mentioned in the following. 

The State Space IDentification (SSID) Toolbox, see McKelvey [76] provides routines
for system identification of multivariate state space models from input/output
measurements. The main feature of this toolbox is that the models do not use the
standard identifiable state space parameterization, which could e.g. be the observa-
bility canonical form, but uses balanced realization with a full parameterization of all
state space matrices. This toolbox cannot work on its own. It depends on the presence
of the System Identification Toolbox and the Control Toolbox, which is another
official toolbox distributed by MathWorks Inc. Another unofficial system identifica-
tion toolbox is the SENSTOOLS toolbox, see Knudsen [63]. This toolbox implements
algorithms for direct identification of physical/continuous-time parameters in linear
and nonlinear systems from input/output measurements. The routines of this toolbox
covers features such as input design, parameter estimation, model validation, and
sensitivity analysis. The NNSYSID toolbox, see Nørgaard [83], is a neural network
based nonlinear system identification toolbox, which contains a large number of
functions for training and evaluation of multilayer perceptron type neural networks.
The main focus is on the use of neural networks as a generic model structure for the
identification of nonlinear systems.

However, in order to use the above-mentioned toolboxes for identification of
structural systems  routines for estimation of modal parameters are missing. Recently,
some MATLAB toolboxes made for solving structural engineering identification
problems have been presented. 

The purpose of the Structural Dynamics Toolbox, see Balmés [12], is to provide a
low cost, modular, and versatile access to methods in experimental and analytical
structural dynamic modelling. The toolbox includes functions for experimental modal
analysis, Finite Element design and update. A GUI provides a layer of predefined
operations for Frequency Response Function visualization, analysis, identification
and 3-D deformation animation. The X-modal modal analysis software package,
Philips et al. [91], was developed as a collaboration between the University of
Cincinnatti and the industry. The software is based on the  Unified Matrix Polyno-
mial Approach (UMPA), see Fladung et al. [23]. The unified approach to modal
parameter estimation in X-modal not only involves the formulation of the algorithms,
but also the presentation of their controlling parameters. This software package was
programmed using the MATLAB language, as well as the C language, and the X-
windows system.
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7.3 The Structural Time Domain Identification (STDI) Toolbox

The review given in the previous section of the various system identification
toolboxes gives a clear motivation for using MATLAB. However, most of the above
toolboxes are not especially suited for experimental modal and spectrum analysis of
ambient excited civil engineering structures using stochastic time domain models.
This is due to several reasons, where the most important are:

L The stochastic part of a parametric model is typically considered as a
nonphysical noise model.

L Most identification routines require measured input.
L Traditional experimental modal analysis tends to use non-parametric

identification methods and to operate in frequency domain.

As a part of this Ph.D. project, it has therefore been the intention to develop a
MATLAB based toolbox for identification of especially ambient excited civil
engineering structures using multivariate stochastic time domain models. For this
reason the toolbox is called the Structural Time Domain Identification (STDI)
toolbox. This toolbox has been developed in accordance with the theory and notation
of this thesis. It has been the intention to make it completely independent of other
official as well as unofficial toolboxes.

7.3.1 Organizing the Identification Results

One of the most important problems that must be solved by a good system
identification software is, how to organize all the results that are generated through
a system identification session. In this context, it is important to distinguish between
primary and secondary results. Primary results are defined as results obtained directly
from an identification algorithm. These results will typically be:

L Model structure information.
L Estimated model parameters.
L Estimated uncertainties of the model parameters.
L Estimated innovation covariance matrix.
L Performance criteria.

The model structure information will typically be a set of parameters describing the
dimensions of the identified model, and which of the parameters of the model have
been estimated and which of them have been held constant. Other primary results are
the estimated uncertainties of the estimated model parameters. These uncertainties
are based upon the Hessian of the criterion function and must therefore be estimated
inside the identification algorithm. This also accounts for the estimated innovation
covariance matrix, which is based upon the prediction errors  calculated from the
final parameter estimates and the measurements, and the performance measures such
as the AIC and FPE criteria. Based on these primary results any secondary result can
be calculated. 
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Typical secondary results are the modal parameters and their estimated uncertainties,
and the spectral densities of the response of the model. The decisions whether the
model is optimal or not can also be characterized as a secondary results, since this
decision is based on analysis of different primary results. Common to all secondary
results is that they can be calculated at any time if the primary results are available.
It is therefore only necessary to store the primary results of an identification session.
In the toolbox the storage of the primary results is performed by organizing these in
one matrix structure, which is called a DDS structure matrix. DDS is an abbreviation
of Data Dependent Systems, see Pandit [84], which is a synonym for system
identification based on measured data.  The contents of this matrix is presented in
table 7.1.

The DDS Structure Matrix 

Model structure information.
Index of adjustable parameters.
Adjustable and non-adjustable model parameters.
Estimated covariance matrix of adjustable model parameters.
Estimated innovation covariance matrix.
Number of measurement channels.
Number of measurements in each channel.
Scaling matrix of the measurements.
Sampling interval.
Final loss (Final value of the criterion function).
Akaike’s Final Prediction Error Criterion (FPE).
ID number for the routine that created the structure.
Time and date for the creation of the structure.

Table 7.1: Information stored in the DDS structure matrix.

The creation of the structure is performed automatically by the identification routines,
and the access to the different elements of the structure is provided by different
functions. A call to a PEM identification routine in the MATLAB environment will
typically look like

+ dds = function( y, ddsinit )

where y is the measured output and ddsinit is an initial DDS structure containing
initial model parameters and model structure information. The primary results of the
identification are then returned in dds. On the basis of the primary results stored in
dds the model validation routines  are typically called by

+ valid_result = function( dds, y )    

and secondary results, such as the modal parameters, are typically obtained by

+ second_result = function( dds )
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7.3.2 An Overview of the Routines of the Toolbox

In this section the different routines in the toolbox will be presented. The purpose of
the routines can be divided into the following categories that cover all part of a
system identification session:

L Information importing.
L Data preprocessing.
L Parameter estimation.
L Model validation.
L Structural mode selection.
L Assessment of uncertainties.
L Information exporting.

The presentation of the different routines will include a short description of its
purpose. A more complete description of the performance of the routines and how
they are used can be found in the Structural Time Domain Identification Users
Manual, see Andersen et al. [8]. The first step in a system identification session is to
set up the bookkeeping involved in the identification process and to acquire data.
Table 7.2 shows that the STDI toolbox offers functions for the project management
and preprocessing of the geometry of the structure, which is necessary for e.g.
animation of mode shapes. Finally, among the routines for information importing the
toolbox also offers routines for communication with plug-in data acquisition cards
and loading of ASCII data files.

Information Importing

Project bookkeeping (Create, load, save....).
Structural geometry preprocessing.
 Data acquisition (Interface to Data Translation plug-in  AD-boards, load/save data
files acquired in other data acquistion enviroments).

Table 7.2: Information importing.

For preprocessing of the data the STDI toolbox contains a whole range of functions,
see table 7.3. The goal of such a preprocessing is to make the measured signals
suitable for system identification. Further, the preprocessing functions can be used
to show and to estimate statistical characteristics of the measured data.

Preprocessing

Scaling, decimation and resampling.
Show measured data and FFT-based spectral densities of it.
Estimates of moments (mean, standard deviation .. ).
Low, high or bandpass filtering.
Split the data into identification and validation data sets.

Table 7.3: Preprocessing of the measured data.
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For the actual identification the toolbox implements algorithms for identifications of
multivariate ARMAV models as well as multivariate stochastic state space systems.
The essential algorithms are based on the PEM approach described in chapter 5.
However, several other identification algorithms exist. These can either be used as
standalone routines or to provide reasonable initial estimates for the PEM routines.
In chapter 2, it was shown how to convert an ARMAV model to a stochastic state
space realization, and how to convert a stochastic state space realization to an
ARMAV model. These conversion schemes make it possible to initialize the
ARMAV PEM routine with the parameters of a stochastic state space realization, or
to initialize the PEM routine of a stochastic state space realization with initial
parameters of an ARMAV model. The different ARMAV estimation routines are
listed in table 7.4a, whereas the different stochastic state space realization estimators
are listed in table 7.4b.

Parameter Estimation - ARMAV Models

Multi-Stage Least-Square estimation of an ARMAV model.
Non-linear Least-Square (PEM) estimation of an ARMAV model.
Least-Square (PEM) estimation of an ARV model.

Table 7.4a: Estimation of the parameters of ARMAV related models.

Parameter Estimation - Stochastic State Space Realizations

Non-linear Least-Square (PEM) estimation of a stochastic state space realization.
An Eigensystem Realization Algorithm (ERA) for estimation of a stochastic state
space realization.
Estimation of a stochastic state space realization using a Numerical algorithm
Subspace State Space System Identification (N4SID).
Estimation of a stochastic state space realization using factorization of a block
Hankel matrix of estimated covariance functions of the measurements (MBH
factorization).

Table 7.4b: Estimation of the parameters of stochastic state space realizations.

The multistage least-square algorithm for estimation of the parameters of an ARMAV
model is described in section 5.6.2. All PEM estimators are based on the theory and
principles given in chapter 5, whereas the ERA realization estimator is based on
Juang et al. [47]. The N4SID algorithm is based on Van Overschee et al. [107], and
the MBH estimator on Aoki [11] and Hoen [38].

To validate or assess the quality of a set of identified models the toolbox offers
several functions, see table 7.5. It is possible to obtain the AIC and FPE criteria of the
models, see section 5.7.3, plot the poles and zeroes, plot the spectral densities and
correlation functions of the prediction errors, and compare the predicted and
measured response. Further, it is also possible to compare the FFT-based spectral
densities of the measured response with the spectral densities obtained from the
model. 
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Model Validation

FPE - Akaike’s Final Prediction Error criterion.
AIC - Akaike’s Information theoretic Criterion.
Plot spectral densities and correlation functions of prediction errors.
Plot measured and predicted response.
Plot poles and zeroes and their uncertainty elipsoides.
Compare spectral densities of measured response with spectral densities of one or
more identified models.

Table 7.5: Model validation functions.

To select the structural or fundamental modes of an optimal model the toolbox offers
different mode selection functions, see table 7.6. One of the simplest ways to identify
the structural modes is to compute the modal parameters and compare these with the
spectral densities of the model and e.g. the MAC values of the mode shapes. 
Another efficient way is to plot stability diagrams with different plotting criteria of
the kinds described in section 6.4. This can of course only be accomplished if several
identified models are available.

Structural Mode Selection

Compute the modal parameters. 
Compute the Modal Assurance Criterion (MAC).
Plot the spectral densities of the model.
Plot various stability diagrams.

Table 7.6: Mode selection functions.

When the optimal model has been selected, it is important to be able to quantify the
uncertainties of the estimated model and modal parameters, see table 7.7. The
estimation of the uncertainties of the estimated parameters is performed according to
the principles explained in section 6.2. 

Assessment of Uncertainties

Return estimated covariance matrix of estimated model parameters.
Return estimated standard deviations of estimated modal parameters.

Table 7.7: Assessment of uncertainties.

Having finished an identification session, the results of it have to be presented and
exported. The toolbox offers various functions especially made for these purposes.
These functions make tables with all estimated modal parameters and their
uncertainties, animate mode shapes, and generate a final report of the identification
session, see table 7.8.
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Information Exporting

Save tables with estimated modal parameters and their uncertainties to an ASCII file.
Animate the estimated mode shapes.
Generate a final documentation report of the identification session.

Table 7.8: Information exporting.

Besides implementing routines that solve the primary tasks presented in the tables the
toolbox implements a variety of necessary auxiliary functions. These routines can be
divided into the categories shown in table 7.9.

Auxiliary Functions

Manipulation of matrix polynomials (Multiplication, modal decomposition, filtering,
stabilization etc.).
Manipulation of state space system (Modal decomposition, filtering, balancing ,
solving Algebraic Riccati and Lyapunov equations etc.).
Relating continuous-time to equivalent discrete-time multivariate systems (Zero-
order hold and covariance equivalence techniques).

Table 7.9: Auxiliary functions of the toolbox.

7.3.3 Example 7.1 - An Identification Session

The best way to shown how to use the toolbox is to give a short example. The steps that will
be shown in this example are:

L Simulation of the response of a Gaussian white noise excited second-order system.
L Identification of an ARMAV model.
L Model validation by investigation of prediction errors and spectral density

comparisons.
L Extraction of model parameters and their estimated standard deviations.

Simulation of the Response of a Gaussian White Noise Excited Second-Order System

The identification session will be based on simulation of a Gaussian white noise excited
second-order 2-DOF system. This system is described by the mass, damping and stiffness
matrices

The intensity matrix of the continuous-time Gaussian white noise is W = I, and the sampling
interval is T = 0.1 seconds. An easy way to simulate this system is to calculate a covariance
equivalent ARMAV(2,1) model, subject this model to a realization of an equivalent discrete-
time Gaussian white noise. This ARMAV(2,1) model, which can be determined by the
technique presented in section 4.2.1, is implemented in the routine armav21.m in the toolbox.
The following command-line calls determine the covariance equivalent ARMAV model and
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simulate 3000 samples in each channel. These simulated noise-free samples are returned in a
data matrix y. 

+ M = eye( 2 );    
+ C = [ 0.4 -0.2;-0.2 0.6 ];    
+ K = [ 350 -150;-150 450 ];
+ W = eye( 2 );    
+ T = 0.1;   
+ N = 3000;
+ u = randn( N, 2 );
+ dds21 = armav21( M, C, K, T, W );
+ y = ddssim( dds21, u );

Gaussian white noise can then be added to the response of each of channels of y to simulate
measurement noise. These two added noise sequences are assumed independent. Each of them
is assumed to have a standard deviation equal to 10 % of the sampled standard deviations of
the simulated responses. The following show how to add these noise terms and how to plot the
spectral densities of the noise-contaminated response using the toolbox routine fftspec.m.

+ R = 0.1*diag( std( y )' );
+ v = ( R*randn( 2, N ) )’;
+ y = y + v;
+ fftspec( y, 256, 128, T );

This last command-line call will then make the following plots of the spectral densities of the
response using FFT. The resolution is 256 points and the segments overlap by 128 points.

Figure 7.2: Spectral densities of noise-contaminated simulated response.
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Identification of an ARMAV Model

The system can then be identified from the measurements. Since Gaussian white noise has been
added to the true system, which was described by an ARMAV(2,1) model, the appropiate
discrete-time model is an ARMAV(2,2) model. This model can be calibrated to the
measurements using the identification routine armav.m that utilizes the nonlinear PEM
estimator described in chapter 5. The following command-line calls shows how armav.m can
be used and how the primary results of the identification can be viewed.

+ dds22 = armav( y, [2 2] );
+ dds22 = t2dds( dds22, T );
+ showdds( dds22 );

This discrete-time 2-channel ARMAV(2,2) model was created by the
command ARMAV on the 12/2 1997 at 13:07. It was based on 3000 samples
in each channel, and a sampling interval of 0.1 seconds. 
Loss function: 1.269e-007, Akaikes FPE: 1.283e-007
The parameters and their standard deviations given as imaginary parts are:

A =

  Columns 1 through 4 

   1.0000             0             0.4405 + 0.0088i  -0.6517 + 0.0116i
   0             1.0000            -0.6679 + 0.0076i   0.8937 + 0.0098i

  Columns 5 through 6 

   0.9606 + 0.0085i   0.0255 + 0.0111i
   0.0186 + 0.0073i   0.9427 + 0.0095i

C =

  Columns 1 through 4 

   1.0000              0             0.4089 + 0.0211i  -0.2605 + 0.0238i
    0             1.0000            -0.2626 + 0.0194i   0.5834 + 0.0217i

  Columns 5 through 6 

   0.1887 + 0.0205i  -0.0679 + 0.0226i
  -0.0477 + 0.0189i   0.1965 + 0.0208i

The innovation covariance matrix is:
Lam =
  1.0e-003 *
  
    0.4020    0.1167
    0.1167    0.3497

The scaling matrix of the response is:
Scale =

     1     0
     0     1
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Model Validation by analysis of the Prediction Errors and Spectral Density Comparisons

If the estimated model contains the true system then the prediction errors should be a white
noise sequence. This can be investigated by plotting the spectral densities and the correlation
functions of the prediction errors. This is one of the purposes of the routine dds2pe.m in the
toolbox. The spectral densities of a discrete-time white noise is constant in the frequency range
from minus to plus the Nyquist frequency. The correlation function of the discrete-time white
noise is described by a spike, a Kronecker delta, at the zero lag. Since only a sequence of the
prediction errors is available and not the complete process, it is satisfactory if the correlation
at other time lags is located inside a 95 % confidence interval. This confidence interval is also
shown as a dotted line in the correlation plots obtained from dds2pe.m. The routine can be
called from the MATLAB command-line as :

+ dds2pe( dds22, y );

and the result is the following plots.

Figure 7.3: Spectral densities and correlation function estimates of the prediction errors.

On the basis of the plots of correlation functions the prediction error sequences can be assumed
to be a white noise sequences. However, the sequences are not completely serially uncorrelated.
The correspondence between the estimated model and the measured data can also be verified
visually by comparing the spectral densities obtained directly from the measurements using
FFT with the spectral densities obtained from the model. This can be accomplished by the
following command-line call to the routine speccmp.m in the toolbox.

+ speccmp( dds22, y );

and the result is the following plots.
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Figure 7.4: Comparison of spectral densities obtained directly from the measured response
using FFT and obtained from the estimated model. The smooth lines are the
spectral densities of the model. 

Extraction of Modal Parameters and their Estimated Standard Deviations

As a final example of how to use the toolbox, it could be interesting to investigate the modal
parameters of the system. The natural eigenfrequencies, damping ratios and scaled mode shapes
of the estimated model can easily be obtained using the routine modal.m in the toolbox. In
addition, it could be interesting to have an idea about the quality of these parameter estimates.
The quality can be assessed by estimation of the standard deviations of the parameter, which
can be obtained by calling the routine sdmodal.m in the toolbox. This estimation follows the
principles explained in section 6.2. The results obtained from calling modal.m from the
MATLAB command-line are shown below.

+ [ phi, f, zeta ] = modal( dds22 )

phi =
   1.3839 + 0.0106i  -0.7071 - 0.0018i
   1.0000                   1.0000          

f =
    2.4755
    3.7533

zeta =
    0.0080
    0.0159

The columns of phi are the scaled and complex mode shapes. These mode shapes have been
normalized with respect to the last coordinate of each mode shape. The vector f contains the
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corresponding natural eigenfrequencies, and zeta the damping ratios.  The estimated standard
deviations are obtained from calling sdmodal.m as shown below.

+ [ sdphi, sdf, sdzeta ] = sdmodal( dds22 )

sdphi =
    0.0105    0.0176
    0             0

sdf =
    0.0033
    0.0066

sdzeta =
    0.0013
    0.0017

The columns of sdphi are the estimated standard deviations of the mode shapes with respect
to the chosen normalization. The vector sdf contains the estimated standard deviations of the
natural eigenfrequencies, whereas the vector sdzeta contains the estimated standard deviations
of the damping ratios.

As seen, it is easy to manage the data obtained during a system identification session. All
primary results are hidden away in the DDS structure matrix and all secondary results are
accessed through various routine calls having the structure matrix as input argument. All
validation routines and routines that extract secondary results work regardless of whether a
DDS structure describes an ARMAV model or a stochastic state space realization. The reason
is that computational manipulations of the ARMAV models are performed by converting these
models into balanced stochastic state space realization.  ~

7.4 Summary

In this chapter the numerical and computational aspects have been considered. It has
been described how to prepare the measured data by prefiltering, resampling and
detrending to make them suitable for system identification. The chapter has also
concerned how to scale the measured data and balance the estimated models to
improve the numerical accuracy of e.g. the modal decomposition of the identified
system. If the measured data contains outliers the prediction filter used should
account for this, since the presence of outliers can have significantly bad effect on the
performance of the estimator. Further, if the amount of measured data is limited, and
if the model order is relatively high then a bad transient behaviour of the prediction
filter might occur. If this is the case, it should be eliminated since it also can have a
significantly bad effect on the performance of the estimator. One way of eliminating
this problem is to use the backward forecasting procedure for estimation of the
unknown initial conditions of the prediction filter. As a part of the Ph.D. project on
which this thesis is based a MATLAB toolbox for system identification of especially
ambient excited civil engineering structures has been developed. This toolbox is
called the Structural Time Domain Identification (STDI) toolbox. In this chapter,
applications of this toolbox have been introduced. The use of the toolbox has been
illustrated by an example based on simulated response of a Gaussian white noise
excited second-order system.
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